Document Type : Research

Author

Department of Basic Science, Farhangian University, Tehran. Iran

Abstract

The transport properties of cargo carriers for organic semiconductors depend on the presence and distribution of trap sites. As we know, traps are the result of irregularities in polymer molecules and chains caused by physical or chemical impurities in the structure of organic semiconductors. From the point of view of crystal defects that cause changes in energy levels and create energy gaps in band theory, the transport properties of cargo carriers in this type of systems will also undergo changes, the most important parameter of which is being replaced or trapped. Will be in the delivery process. Of course, defects can play a role in the distribution centers in the system.
In this paper, using different combinatorial models of carriers, the effects of basic parameters on the performance of heterogeneous organic solar cells as well as charge transfer are investigated. In order to simulate these processes, in this section, the basic parameters of P3HT: PCBM-structured organic solar cells have been studied by using the self-consistent solution of momentum-diffusion equations and Poisson equation, as well as using different recombination models by finite element method.

Keywords

[1]  C. Liang, Y. Wang, D. Li, X. Ji, F. Zhang, Z. He, Modeling and simulation of bulk heterojunction polymer solar cells, Sol. Energy Mater. Sol. Cells, 127 (2014) 67–86.
[2]  T. Tromholt, M. Manceau, M. Helgesen, J. E. Carle, F. C. Krebs, Degradation of semiconducting polymers by concentrated sunlight, Sol. Energy Mater. Sol. Cells, 95 (2011) 1308-1320
[3]  Y. Zhou, J. Pei, Q. Dong, X. Sun, Y. Liu, W. Tian, Donor- Acceptor Molecule as the Acceptor for Polymer-Based Bulk Heterojunction Solar Cells, J. Phys. Chem. C, 113 (2009) 7882- 78809
[4]  A. Mahmoudloo , S. Ahmadi , Influence of the temperature on the charge transport and recombination profile in organic bulk heterojunction solar cells: a drift-diffusion study, J. Applide Physics A,119(4), (2015) 1523-1529.
[5]  D. Rezzonico, B. Perucco, E. Knapp, R. Hausermann, N. A. Reinke, F. Muller, B. Ruhstaller, Numerical analysis of exciton dynamics in organic light-emitting devices and solar cells, J. of Photonics for Energy, 1 (2011) 011005-1.
[6]  J. D. Kotlarski, L. J. A. Koster, P. W. M. Blom, M. Lenes, and L. H. Slooff, Combined optical and electrical modeling of polymer:fullerene bulk heterojunction solar cells, J. Appl. Phys. 103 (2008) 084502.
[7]  A. H. Fallahpour, A. Gagliardi, F. Santoni, D. Gentilini, A. Zampetti, M. Auf der Maur, and A. Di Carlo Modeling and simulation of energetically disordered organic solar cells, J. Appl. Phys, 103(2014) 184502.
[8]  R. Yahyazadeh, Z. Hashempour, Effect of Hyrostatic pressure on optical Absorption coeffivient of InGaN/GaN of Multiple Quantum well solar cells, Journal of optoelectronical Nano structures,6.2 (2021) 1-22
[9]  L. J. A. Koster, E. C. P. Smits, V. D. Mihailetchi, P. W. M. Blom, Device model for the operation of polymer/fullerene bulk heterojunction solar cells, Phys. Rev. B, 72 (2005) 085205.
[10]  J. Nelson, J. J. Kwiatkowski, J. Kirkpatrick, and J. M. Frost, Modeling charge transport in organic photovoltaic materials, Acc. Chem. Res., 42 (2009) 1768.
[11]  F. F. Stelzl, Uli Wurfel, Modeling the influence of doping on the performance of bulk heterojunction organic solar cells: One-dimensional effective semiconductor versus two-dimensional onor/acceptor model, Phys. Rev. B., 86 (2012) 075315.
[12]  B. Ray and M. A. Alam, Random vs regularized OPV: Limits of performance gain of organic bulk heterojunction solar cells by morphology engineering, Sol. Energy Mater. Sol. Cells, 99 (2012) 204.
[13]  M. Pfeiffer , K. Leo, X. Zhou, J.S. Huang, M. Hofmann, A. Werner, J. Blochwitz-Nimoth, Doped organic semiconductors: Physics and application in light emitting diodes, Organic Elec. 4 (2003) 89103.
[14]  B. A. Gregg, Transport in Charged Defect-Rich p-Conjugated Polymers, J. Phys. Chem. C, 113 (2009) 5899.
[15]  B. A. Gregg, Charged defects in soft semiconductors and their influence on organic photovoltaics, Soft Matter., 5 (2009) 2985
[16]  A. Nollau, M. Pfeiffer, T. Fritz, K. Leo, Controlled n-type doping of a molecular Organic semiconductor: naphthalenetetracarboxylic dianhydride (NTCDA) doped with bis (ethylenedithio)- tetrathiafulvalene (BEDT-TTF), J. Appl. Phys., 87 (2000) 4340-4343.
[17]  A. Veysel Tunc, A. De Sio, D. Riedel, F. Deschler, E. Da Como, J. Parisi, E. von Hauff, Molecular doping of low-bandgap-polymer: fullerene solar cells: Effects on transport and solar cells, Org. Electron., 13 (2012) 290.
[18]  B. Maennig, M. Pfeiffer, A. Nollau, X. Zhou, K. Leo, P. Simon, Controlled p-type doping of polycrystalline and amorphous organic layers: Self-consistent description of conductivity and field-effect mobility by a microscopic percolation model, Phys. Rev. B, 64 (2001) 195208.