Document Type : Research

Author

Faculty of Engineering, Ayatollah Borujerdi University

Abstract

So far, most of researches and investigations have been based on absorption and surface plasmon waves propagation on graphene and its various realized patterns mounted over isotropic substrates. In this paper, at first the structure of graphene over hexagonal boron nitride, as an anisotropic substrate, its effective permittivity and reflection coefficient, and also, the possibility of their tuning through change in graphene Fermi level, is studied. Then, characteristics of surface plasmon waves propagation on graphene nano-ribbons mounted over uniaxial anisotropic substrate are investigated analytically and numerically. Employing such substrates can decrease propagation loss in comparison with other substrates dramatically. The results of this investigation can be utilized in analysis of absorbers and periodic arrays of graphene nano-ribbon over hexagonal boron nitride substrates.

Keywords

[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, “Electric field effect in atomically thin carbon films,” Science, Vol. 306, pp. 666-669, 2004.
[2] A. Dolatabady, N. Granpayeh, and V. Foroughi Nezhad, “A nanoscale refractive index sensor in two dimensional plasmonic waveguide with nanodisk resonator,” Opt. Commun. Vol. 300, pp. 265-268, 2013.
[3] A. Dolatabady, N. Granpayeh, and M. Salehi, “Ferrite loaded graphene based plasmonic waveguide,” Opt. Quant. Electron. Vol. 50, pp. 1-11, 2018.
[4] F. Ghasemi, S. Roshan Entezar, and S. Razi, “Graphene based photonic crystal optical filter: Design and exploration of the tunability,” Phys. Lett. A. Vol. 383, pp. 2551-2560, 2019.
[5] S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. Vol. 108, p. 047401, 2012.
[6] M. Ono, M. Hata, M. Tsunekawa, K. Nozaki, H. Sumikura, H. Chiba, and M. Notomi, “Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides,” Nat. Photon. Vol. 14, pp. 37-43, 2020.
[7] H. Deng, Z. Li, L. Stan, D. Rosenmann, D. Czaplewski, J. Gao, and X. Yang, “Broadband perfect absorber based on one ultrathin layer of refractory metal,” Opt. Lett. Vol. 40, pp. 2592–2595, 2015.
[8] M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express, Vol. 19, pp. 17413–17420, 2011.
[9] X. Cao, Y. Zhang, Z. Han, W. Li, G. Liu, Z. Xue, Y. Jin, and A. Wu, “Perfect near-infrared absorption of graphene with hybrid dielectric nanostructures,” J. Mater. Sci. Mater. Vol. 31, pp. 5820-5826, 2020.
[10] H.A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. Vol. 9, pp. 205–213, 2010.
[11] C. Huang, Y. Zhang, L. Liang, H. Yao, F. Qiu, and W. Liu, “Analysis of graphene-based tunable THz four-band absorption sensors,” Appl. Opt. Vol. 61, pp. 2103-2107, 2022.
[12] Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection,” Nano Lett. Vol. 14, pp. 3749-3754, 2014.
[13] J. Linder and K. Halterman, “Graphene-based extremely wide-angle tunable metamaterial absorber,” Phys. Opt. Vol. 1602, p. 01466, 2016.
[14] G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express, Vol. 24, pp. 1518–1527, 2016.
[15] Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene baed tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express, Vol. 22, pp. 22743-22752, 2014.
[16] A. Dolatabady, N. Granpayeh, and M. Abedini, “Frequency-tunable logic gates in graphene nano-waveguides,” Photonic Netw. Commun. Vol. 39, pp. 187-194, 2020.
[17] H. Hajian, A. Ghobadi, B. Butun, and E. Ozbay, “Tunable, omnidirectional, and nearly perfect resonant absorptions by a graphene-hBN based hole array metamaterial,” Opt. Express, Vol. 26, pp. 16940-16954, 2018.
[18] V.W. Brar, M.S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L.B. Kim, M. Choi, and H. Atwater, “Hybrid surfacephonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures,” Nano Lett. Vol. 14, pp. 3876–3880, 2014.
[19] Y. Jia, H. Zhao, Q. Guo, X. Wang, H. Wang, and F. Xia, “Tunable plasmon–phonon polaritons in layered graphene–hexagonal boron nitride heterostructures,” ACS Photonics, Vol. 2, pp. 907–912, 2015.
[20] M. Yankowitz, Q. Ma, P. Jarillo-Herrero, and B.J. LeRoy, “van der Waals heterostructures combining graphene and hexagonal boron nitride,” Nat. Rev. Phys. Vol. 1, pp. 112-125, 2019.
[21] C. Luo, S.G. Johnson, J.D. Joannopoulos, and J.B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B, Vol. 65, p. 201104(R), 2002.
[22] A.Y. Nikitin, E. Yoxall, M. Schnell, S. Velez, I. Dolado, P.A. Gonzalez, F. Casanova, L.E. Hueso, and R. Hillenbrand, “Nanofocusing of hyperbolic phonon polaritons in a tapered boron nitride slab,” ACS Photonics, Vol. 3, pp. 924-929, 2016.
[23] D.R. Smith and D. Schurig, “Electromagnetic wave propagation in a media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. Vol. 90, p. 077405, 2003.
[24] S. Shah, X. Lin, L. Shen, M. Renuka, B. Zhang, and H. Chen, “Interferenceless polarization splitting through nanoscale van der Waals heterostructures,” Phys. Rev. Appl. Vol. 10, p. 034025, 2018.
[25] K. Moon and S.Y. Park, “Graphene-based plasmonic switch using resonant coupling to the local plasmon resonance,” Phys. Rev. Appl. Vol. 11, p. 034074, 2019.
[26] A. Woessner, M.B. Lundeberg, Y. Gao, A. Principi, P.A. Gonzalez, M. Carrega, K. Wantanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F.H.L. Koppens, “Highly confined low-loss plasmons in grapheneboron nitride heterostructures,” Nat. Mater. Vol. 14, pp. 421-425, 2015.
[27] D.G. Baranov, J.H. Edgar, T. Hoffman, N. Bassim, and J.D. Caldwell, “Perfect interferenceless absorption at infrared frequencies by a van der Waals crystal,” Phys. Rev. B, Vol. 92, p. 201405, 2015.
[28] A. Dolatabady, S. Asgari, and N. Granpayeh, “Tunable mid-infrared nanoscale graphene-based refractive index sensor,” IEEE Sens. J. Vol. 18, pp. 569-574, 2017.
   
[29] B. Zhu, G. Ren, S. Zheng, Z. Lin, and S. Jian, “Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices,” Opt. Express, Vol. 21, pp. 17089–17096, 2013.
[30] Z. Jacob, “Nanophotonics: Hyperbolic phonon-polaritons,” Nat. Mater. Vol. 13, pp. 1081–1083, 2014.
[31] S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S. E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. Vol. 10, pp. 682–686, 2015.
[32] A. Dolatabady and N. Granpayeh, “Tunable far-infrared plasmonically induced transparency in graphene based nano-structures,” J. Opt. Vol. 20, p. 075001, 2018.
[33] C. Zhang, B. Yang, X. Wu, T. Lu, Y. Zheng, and W. Su, “Calculation of the effective dielectric function of composites with periodic geometry,” Physica B, Vol. 293, pp. 16–32, 2000.
[34] C.A. Balanis, Advanced Engineering E;ectromagnetics, 2nd Ed. John Wiley & Sons, 2012.
[35] C. Tuo and L. Xuan-Lui, “Surface Plasmon and Fabry-Perot enhanced magneto-optical Kerr effect in graphene microribbons,” Chinese. Phys. Lett. Vol. 32, p. 024204, 2015.
[36] M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B, Vol. 80, p. 245435, 2009.
[37] G.W. Hanson, “Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide,” J. Appl. Phys. Vol. 104, p. 084314, 2008.