Document Type : Research

Authors

1 Ph.D. Student, Physics, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Associate Professor, Department of Physics, Science and Research Branch, Islamic Azad University, Teh-ran, Iran

3 Associate Professor, Department of Physics, Kermanshah Branch, Islamic Azad University, Ker-manshah, Iran

Abstract

We predicted that half-Heusler alloy PtFeBi is a potential candidate for using in spintronic and optoelectronic devices. By using first principle calculations based on density functional theory (DFT) within generalized gradient approximation (GGA), we studied the structural, electronic, magnetic and optical properties of PtFeBi half-Heusler alloy in bulk state and (001) surfaces and for FeBi and PtPt terminations. Spin polarization at Fermi level is -77.7% for bulk and -70.5% and -70.2% for FeBi and PtPt terminatins, respectively. The real part of the dielectric function for the incident light in both the xx and zz directions for energies greater than 8eV for all three terminations is the same, and for energies greater than 15eV they converge to one, indicating that they act as an isotropic insulator. Also, the refractive index for energies greater than 7.5 eV is less than one, indicating super-luminance.

Keywords

[1] F. Heusler, W. Starck, E. Haupt, Verh. Dtsch. Phys. Ges. 5, 219 (1903).
[2] R.A. de Groot, F.M. Mueller, P.G. van Engen, K.H.J. Buschow, Phys. Rev.Lett. 50, 2024–2027 (1983).
[3] S.A. Wolf, A.Y. Chtchelkanova, D.M. Treger, IBM J. Res. Dev. 50, 101–110 (2006).
[4] L.B. Chandrasekar, K. Gnanasekar, M. Karunakaran, Superlattices Microstruct. 136, 106322 (2019).
[5] A. Hirohata, K. Yamada, Y. Nakatani, I.-L. Prejbeanu, B. Diény, P. Pirro, B. Hillebrands, J. Magn. Magn. Mater. 509, 166711 (2020).
[6] R.L. Zhang, L. Damewood, C.Y. Fong, L.H. Yang, R.W. Peng, C. Felser, AIP Adv. 6, 115209 (2016).
[7] Z. Hao, R. Liu, Y. Fan, L. Wang, J. Alloys Compd. 820, 153118 (2020).
[8] M. Ram, A. Saxena, A.E. Aly, A. Shankar, RSC Adv. 10, 7661–7670 (2020).
[9] S. Idrissi, H. Labrim, S. Ziti, L. Bahmad, Appl. Phys. A 126, 190 (2020).
[10] C. Wu, W. Zheng, W. Feng, W. Jiang, J. Phys. Soc. Japan 89, 064713 (2020).
[11] M. Mushtaq, M.A. Sattar, S.A. Dar, I. Qasim, I. Muhammad, Mater. Chem. Phys. 245, 122779 (2020).
[12] J. Ma, V.I. Hegde, K. Munira, Y. Xie, S. Keshavarz, D.T. Mildebrath, C. Wolverton, A.W. Ghosh, W.H. Butler, Phys. Rev. B 95, 024411 (2017).
[13] K. Schwarz, J. Phys. F Met. Phys. 16, L211–L215 (1986).
[14] S.F. Matar, M.A. Subramanian, R. Weihrich, Chem. Phys. 310, 231–238 (2005).
[15] B. Amin, F. Majid, M.B. Saddique, B. Ul Haq, A. Laref, T.A. Alrebdi, M. Rashid, Comput. Mater. Sci. 146, 248–254 (2018).
[16] S.E.A. Yousif, O.A. Yassin, J. Alloys Compd. 506, 456–460 (2010).
[17] Bouadjemi, S. Bentata, A. Abbad, W. Benstaali, B. Bouhafs, Solid State Commun. 168, 6–10 (2013).
[18] M. Retuerto, M.-R. Li, P.W. Stephens, J. Sánchez-Benítez, X. Deng, G. Kotliar, M.C. Croft, A. Ignatov, D. Walker, M. Greenblatt, Chem. Mater. 27, 4450–4458 (2015).
[19] Y.P. Liu, H.R. Fuh, Y.K. Wang, J. Magn. Magn. Mater. 341, 25–29. (2013).
[20] R.K. Singhal, A. Samariya, Y.T. Xing, S. Kumar, S.N. Dolia, U.P. Deshpande, T. Shripathi, E.B. Saitovitch, J. Alloys Compd. 496, 324–330 (2010).
[21] S. Kervan, N. Kervan, J. Magn. Magn. Mater. 382, 63–70 (2015).
[22]  B. Prajapati, S. Kumar, M. Kumar, S. Chatterjee, A.K. Ghosh, J. Mater. Chem. C 5, 4257–4267. (2017).
[23] D. Saikia, J. Jami, J.P. Borah, Phys. B Condens. Matter 56525–3, 25–32 (2019).
[24] A. Boochani, B. Nowrozi, J. Khodadadi, S. Solaymani, S. Jalali-Asadabadi, J. Phys. Chem. C 121, 3978–3986 (2017).
[25] M.K. Hussain, Appl. Phys. A 124, 343 (2018).
[32] [26] W. Huang, X. Wang, X. Chen, W. Lu, L. Damewood, C.Y. Fong, J. Magn. Magn. Mater. 377, 252–258 (2015).
[27] P. Blaha, K. Schwarz, P. Sorantin, S. B. Trickey, Comput. Phys. Commun. 59 (2), 399-415(1990).
[28] K. Schwarz, P. Blaha, Computational Materials Science. 28 (2), 259-273 (2003).
[29] C. Ambrosch-Draxl, J.O. Sofo, Comput. Phys. Commun. 175 (1), 1-14 (2006).