Document Type : Research

Authors

1 Ph.D., Physics, Shiraz Branch, Islamic Azad University, Shiraz, Iran

2 Associate Professor, Department of Physics, Shiraz Branch, Islamic Azad University, Shiraz, Iran

3 Assistant Professor, Department of Physics, Shiraz Branch, Islamic Azad University, Shiraz, Iran

4 Assistant Professor, Department of Physics, Lamerd Higher Education Center, Lamerd, Iran

Abstract

In this paper, based on the perturbation theory, the energy eigenvalues of two, three, and four-layer quantum anti-dots are obtained. Using numerical calculations, the effects of the magnetic field, radius, and the number of layers of these nanostructures are investigated on 1S and 2P energy levels. The results of this study show that increasing the magnetic field, radius and the number of layers of quantum anti-dot increase the 1S and 2P energy levels. Further calculations show that the applied magnetic field sometimes causes new degeneracies, which can be seen in the 2P energy sublevels.

Keywords

[1] R. Betancourt-Riera, R. Betancourt-Riera, L.A. Ferrer-Moreno, A.D. Sañu-Ginarte, Theory of electron Raman scattering in a semiconductor core/shell quantum well wire, Physica B. 563 (2019) 93–100.
[2] L. Van-Tan, T. Van Thang, N. Duy Vy, H. Thien Cao, Spin polarization and temperature dependence of electron effective mass in quantum wires, Physics Letters A. 383 (2019) 2110–2113.
[3] K. Jaya Bala, A. John Peter, C. W. Lee, Interband and intersubband optical transition energies in a G I N/GaN quantum dot, Optik. 183 (2019) 1106–1113.
[4] Y. Naimi, A.R. Jafari, Oscillator strengths of the intersubband electronic transitions in the multi-layered nano-antidots with hydrogenic impurity, J. Comput. Electron. 11(2012) 414-420.
[ 5] L. Su, B. Liang, Y. Wang, Q. Yuan, Q. Guo, S. Wang, G. Fu, D.L. Huffaker, Y.I. Mazur, M.E. Ware, Y. Maidaniuk, G.J. Salamo, Abnormal photoluminescence for GaAs/A G As quantum dot-ring hybrid nanostructure grown by droplet epitaxy, Journal of Luminescence. 195 (2018) 187–192.
[6] K.A. Rodríguez-Magdaleno, R. Pérez-Álvarez, J.C. Martínez-Orozco, Intra-miniband absorption coefficient in  core/shell spherical quantum dot, Journal of Alloys and Compounds. 736 (2018) 211–215.
[7] H. Ghaforyan, M. Ebrahimzadeh, T. Ghaffary, H. Rezazadeh, ZS. Jahromi, Microwave absorbing properties of Ni nanowires grown in nanoporous anodic alumina templates, Chinese Journal of Physics 52 (1), 233-238.
[8] F.K. Boz, B. Nisanci, S. Aktas, S.E. Okan, Energy levels of  spherical quantum dot with an impurity, Applied Surface Science. 387 (2016) 76–81.
[9] E. Sadeghi, G. Rezaie, Effect of magnetic field on the impurity binding energy of the excited states in spherical quantum dot, Pramana. 75 (2010) 749–755,.
[10] V. Pavlovi, M. Susnjar, K. Petrovi, L. Stevanovi, Electromagnetically induced transparency in a multilayered spherical quantum dot with hydrogenic impurity, Optical Materials. 78 (2018) 191-200.
[11] S. M. Bilankohi, M. Ebrahimzadeh, T. Ghaffary, Study of the properties of Au/Ag core/shell nanoparticles and its application, Indian Journal of Science and Technology. 8 (2015) 31-33.
[12] Y. Naimi, A.R. Jafari, Optical properties of quantum dots versus quantum antidots: Effects of hydrostatic pressure and temperature, Journal of Computational Electronics. 13 (2014) 666-672.
[13] T. Ghaffary, M. Ebrahimzadeh, MM. Gharahbeigi, L. Shahmandi, Fabrication of iron nanowire arrays using nanoporous anodic alumina template, Asian Journal of Chemistry 24 (7), 3237.
[14] A.R. Jafari, Y. Naimi, Linear and nonlinear optical properties of multi-layered spherical nano-systems with donor impurity in the center, J. Comput. Electron. 12 (2013) 36-42.
[15] G.V.B. de Souza, A. Bruno-Alfonso, Finite-difference calculation of donor energy levels in a spherical quantum dot subject to a magnetic field, Physica E. 66 (2015) 128–132.