Document Type : Research

Authors

1 Ph.D., Radiation Application Research School, NSTRI, AEOI, Tehran, Iran

2 Ph.D., Physics and Accelerators, Research School, NSTRI, AEOI, Tehran, Iran

3 Assistant Professor, Photonics and Quantum Technologies Research School, NSTRI, AEOI, Tehran, Iran

Abstract

The operation principle of calorimeters used for dosimetry of ionizing radiations is based on measuring the induced temperature difference in the adsorbent due to thermal energy deposition of the ionization radiation. In recent years, one of these methods has been the holographic optical calorimetry by laser beams. One of the problems that affect the response accuracy of the calorimeters is the heat transfer phenomenon in the adsorbent material. This phenomenon affects the measurement accuracy of the absorbed dose. In this work, using numerical coding in the FORTRAN environment, the dose profile change due to heat transfer effects in the PMMA tissue-equivalent material inside a holographic interferometry calorimeter has been investigated and the results have been compared with the finite element method results.

Keywords

[1] امیرمحمد بیگ زاده، محمدرضا رشیدیان وزیری و فرهود ضیائی.«به کارگیری روش تداخل‌سنجی تمام‌نگاری دیجیتال با نوردهی دوگانه برای محاسبه میزان دز جذبی در پلیمر پلی‌متیل متاآکریلات»، مجله سنجش و ایمنی پرتو، جلد 5، شماره 4، 1396.
[2] محمدرضا رشیدیان وزیری، امیرمحمد بیگ زاده و فرهود ضیائی.«اندازه‌گیری دز جذبی الکترون در فانتوم آب به روش تمام‌نگاری دیجیتال با باریکه لیزر»، مجلة علمی پژوهشی «علوم و فناوری‌های پدافند نوین»، جلد 9، شماره 4. 1397.
[3] A. M. Beigzadeh, MR Rashidian Vaziri, and F. Ziaie. "Modelling of a holographic interferometry based calorimeter for radiation dosimetry." NIM A: pp. 40-49, 2017.
[4] D.B. Pelowitz, MCNPX User’s Manual Version 2.5. 0, 76, Los Alamos National Laboratory, 2005.
[5] Sweeney, D. W., and C. M. Vest. "Measurement of three-dimensional temperature fields above heated surfaces by holographic interferometry." International Journal of Heat and Mass Transfer 17.12 (1974) : 1443-1454.
[6] Faw, R. E., and T. A. Dullforce. "Holographic interferometry measurement of convective heat transport beneath a heated horizontal plate in air." International Journal of Heat and Mass Transfer 24.5 (1981) : 859-869.
[7] Lee, Jae-Heon, and R. J. Goldstein. "An experimental study on natural convection heat transfer in an inclined square enclosure containing internal energy sources." Journal of heat transfer 110.2 (1988) : 345-349.
[8] Sarfehnia, A., et al. Primary water calorimetry for clinical electron beams, scanned proton beams and 192 Ir brachytherapy. No. IAEA-CN-182. 2010.
[9] Guerra, A. S., et al. "A standard graphite calorimeter for dosimetry in brachytherapy with high dose rate 192Ir sources." Metrologia 49.5 (2012): S179.
[10] A. Miller, W.L. McLaughlin." Holographic measurements of electron-beam dose distributions around inhomogeneities in water". Phys Med Biol. pp 285 1976.
[11] Bergman, Theodore L., et al. Introduction to heat transfer. John Wiley & Sons, 2011.
[12] Pryor, Roger W. Multiphysics modeling using COMSOL®: a first principles approach. Jones & Bartlett Publishers, 2009.
[13] Minkowycz, W. J., et al. "Handbook of numerical heat transfer." New York (1988).
[14] Reddy, Junuthula Narasimha. Introduction to the finite element method. McGraw-Hill Education, 2019.