Document Type : Research

Author

Ph.D., Physics, Islamic Azad University Khoramabad Branch, Khoramabad, Iran

Abstract

on density functional theory the electronic, magnetic and optical properties of the Cr2ScSb full-Heusler compound have been investigated. This compound has half-metallic gap of 0.07 eV at equilibrium lattice constant, but there is no band gap in the band structure.Cr2ScSb is stable in ferromagnet state. The total magnetic moment of Cr2ScSb is 4 μ_B and following the Slater-Pauling rule. Results of the investigation of optical properties showed that this compound is a good choice for use as an electromagnetic waves absorbent.

Keywords

[1] N. Kervan, S. Kervan, Half-metallic properties in the Fe2TiP full-Heuslercompound, Intermetallics 37 (2013) 88-91.
[2] O. Canko, F. Ta¸skin, M. Ati¸s, N. Kervan, S. Kervan, Magnetism and halfmetallicity in the Fe2ZrP Heusler alloy, J. Supercond. Nov. Magn. 29 (2016) 1-6.
[3] X.D. Xu, Z.X. Chen et al. Microstructure, magnetic and transport properties of a Mn2CoAl Heusler compound, Acta Materialia 176 (2019) 33-42.
[4] Rai, D.P., Thapa, R.K. (2014). Study of electronic, magnetic, optical and elastic properties of Cu2MnAl a gapless full Heusler compound. J. Alloys. Compd. 612, 355–360.
[5] A. Birsan, V. Kuncser, First principle investigations of the structural, electronic and magnetic properties of predicted new zirconium based full-Heusler compounds, Zr2MnZ (Z=Al, Ga and In), J. Mang. Mang. Mat. 406 (2016) 282–288.
[6] I. Asfour, H. Rached, S. Benalia, D. Rached, Investigation of electronic structure, magnetic properties and thermal properties of the new half-metallic ferromagnetic full-Heusler alloys Cr2GdSi1-xGex: an ab-initio study, J. Alloys. Compd. 676 (2016) 440– 451.
[7] F. Bagverdi, F. Ahmadian, First principles study of half-metallic ferromagnetism of the full-Heusler compounds RbSrX2 (X = C, N, and O), J. Supercond. Nov. Magn. 28 (2015) 2773–2781.
[8] Huang, W., Wang, X., Chen, X., Lu, W., Damewood, L., Fong, C.Y. (2015). Structural and electronic properties of half-Heusler alloys PtXBi (with X=Mn, Fe, Co and Ni) calculated from first principles. J. Magn. Magn. Mat. 377, 252–258.
[9] Lakdja, A., Rozale, H., Chahed, A., Benhelal, O. (2015). Ferromagnetism in the half-Heusler XCsBa compounds from first-principles calculations (X = C, Si, and Ge). J. Alloys. Compd. 564, 8–12.
[10] Behbahani, M.A., Moradi, M., Rostami, M., Davatolhagh, S. (2016). First principle study of structural, electronic and magnetic properties of half-Heusler IrCrZ (Z=Ge, As, Sn and Sb) compounds. J. Phys. Chem. Solids 92, 85–93.
[11] Checca, N.R., Caraballo-Vivas, R.J., Torrão, R., Rossi, A., Reis, M.S. (2017). Phase composition and growth mechanisms of half-metal Heusler alloy produced by pulsed laser deposition: from core-shell nanoparticles to amorphous randomic clusters. Mater. Chem. Phys. 196,103–108.
[12] Balke, B., Fecher, G., Felser, C. (2013). New Heusler compounds and Their Properties, in: C. Felser, G.H. Fecher (Eds.), Springer, Berlin, 15–43 Spintronic.
[13] Abdullahi, Y.Z., Yoon, T.L., Halim, M.M., Hashim, M.R., Lim, T.L. (2018).  First-principles investigation of graphitic carbon nitride monolayer with embedded Fe atom. Surf. Sci. 667, 112–120.
[14] Torosyan, G., Keller, S., Scheuer, L., Beigang, R., Papaioannou, E.T. (2018). Optimized spintronic terahertz emitters based on epitaxial grown Fe/Pt layer structures. Sci. Rep. 8, 1311.
[15] J. Jalilian, Comment on ‘Study of electronic, magnetic, optical and elastic properties of Cu2MnAl a gapless full Heusler compound, J. Alloys. Compd. 626 (2015) 277–279.
[16] Khandy, S.A., Islam, I., Gupta, D. C., Laref, A. (2019). Full Heusler alloys (Co2TaSi and Co2TaGe) as potential spintronic materials with tunable band profiles. J. of Solid State Chemistry 270, 173-179.
[17] M. Moradi, N. Taheri, M. Rostami, Structural, electronic, magnetic and vibrational properties of half-Heusler NaZrZ (Z = P, As, Sb) compounds, Physics Letters A 382 (2018) 3004-3011.
[18] Watts, S.M., Wirth, S., Von Molnar, S., Barry, A., Coey, J.M.D. (2000). Evidence for two-band magnetotransport in halfmetallic chromium dioxide. Phys. Rev. B 61, 9621–9628.
[19] Kim, T.W., Jeon, H.C., Kang, T.W., Lee, H.S., Lee, J.Y., Jin, S. (2006). Microstructural and magnetic properties of zinc-blende MnAs films with half metallic characteristics grown on GaAs (100) substrates. Appl. Phys. Lett. 021915, 88.
[20] Shekhar, C., Ouardi, S., Fecher, G.H., Nayak, A.K., Felser, C., Ikenaga, E. (2012). Electronic structure and linear magnetoresistance of the gapless topological insulator PtLuSb. Appl. Phys. Lett. 100, 252109.
[21] Jourdan, M., Minár, J., Braun, J., Kronenberg, A., Chadov, S., Balke, B., Ebert, H. (2014). Direct observation of half-metallicity in the Heusler compound Co2MnSi. Nat. Commun. 5, 3974.
[22] Parkin, S. S. P. et al. (1999). Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited). Appl. Phys. 85, 5828.
[23] Jain, R., Lakshmi, N., Jain, V.K., Jain, V., Chandra, A.R., Venugopalan, K. (2018). Electronic structure, magnetic and optical properties of Co2TiZ (Z = B, Al, Ga, In) Heusler alloys. J. Magn. Magn Mater. 448, 278.
[24] Zutic, I., Fabian, J. and Das Sarma, S. (2004). Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323.
[25] Jain, V. K., Lakshmi, N., Jain, R., Jain, V., Chandra, A. R., Venugopalan, K. (2017). Electronic structure, magnetic and optical properties of quaternary Fe2−x Cox MnAl Heusler alloys. J. Magn. Magn Mater 52, 6800–6811.
[26] Gao, G.Y., Yao, K.L., Sasioglu, E., Sandratskii, L.M., Liu, Z.L.,Jiang, J.L. (2007). Half-metallic ferromagnetism in zinc-blende CaC, SrC, and BaC from first principles. Phys. Rev. B. 75, 174442– 174448.
[27] Gao, G.Y., Yao, K.L., Song, M.H., Liu, Z. L. (2011). Half-metallic ferromagnetism in rocksalt and zinc-blende MS (M = Li, Na and K): a first-principles study. J. Magn. Magn. Mater. 323, 2652–2657.
[28] M. Safavi, M. Moradi, M. Rostami, Structural, Electronic and Magnetic Properties of NaKZ (Z = N, P, As, and Sb) Half-Heusler Compounds: a First-Principles study, J. Superconduct. Nov. Magn. 30 (2016) 989-997.
[29] K. Sato, et al. Exchange interactions in diluted magnetic semiconductors, J. Phys. Condens. Matter 16 (2004) S5491–S5497.
[30] J. C. Slater, The Ferromagnetism of Nickel. II. Temperature Effects, Phys. Rev. 49 (1936) 931-937.
[31] L. Pauling, The Nature of the Interatomic Forces in Metals, Phys. Rev. 54 (1938) 899-904.
[32] A. Delin, O. Eriksson, R. Ahuja, B. Johansson, M.S.S. Brooks, T. Gasche, S. Auluck, and J.M. Wills, Optical properties of the group-IVB refractory metal compounds, Phys. Rev. B 54 (1996) 1673-1681.