Document Type : Research

Author

Associate Professor, Physics, Shiraz University of Technology

Abstract

In this paper, the temporal evolution of the nonlinear coherent states in a parametric oscillator in the presence of a Kerr medium is investigated. For this purpose, the Hamiltonian of the system is written in the interaction picture and as a combination of time-independent operators with time - dependent coefficients using an approximation method. Then, the temporal evolution of a nonlinear coherent state is obtained by exerting the corresponding time-evolution operator. In addition, the Mandel parameter, the auto - correlation function and the Husimi-Q distribution function of the time-dependent nonlinear coherent states in the parametric oscillator in a Kerr Medium are studied and analyzed.

Keywords

  • Menouar, M. Maamache and J. R. Choi, An alternative pproach to exact wave functions for time-dependent coupled oscillator model of charged particle in variable magnetic field, Ann. Phys. 325 (2010) 1708–1719.
  • Gao, R. F. O'Connell, Q. B. Tang and R. M. Wang, Eur. Phys. J. D 69 (2015) 20.
  • V. Dodonov, A. B. Klimov and D. E. Nikonov, Quantum phenomena in nonstationary media, Phys. Rev. A 47 (1993) 4422–4429.
  • Gazdy and D. A. Micha, The linearly driven parametric oscillator: application to collisional energy transfer, J. Chem. Phys. 82 (1985) 4926–4936.
  • Récamier and R. Jáuregui, Time-evolution operator for a forced parametric oscillator, Int. J. Quantum Chem. 62 (1997) 125–135.
  • R. Lewis, Classical and quantum systems with time-dependent harmonic-oscillator-type Hamiltonians, Phys. Rev. Lett. 18 (1967) 510–512.
  • Dodonov and O. Man’ko, Universal invariants in quantum mechanics and physics of optical and particle beams, J. Russ. Laser Res. 21(2000) 438–464.
  • Kiss, J. Janszky and P. Adam, Time evolution of harmonic oscillators with time-dependent parameters: a step-function approximation, Phys. Rev. A 49 (1994) 4935–4942.
  • Castaños, D. Schuch and O. Rosas-Ortiz, Generalized coherent states for time-dependent and nonlinear Hamiltonian operators via complex Riccati equations, J. Phys. A 46 (2013) 075304.
  • Tanas, Coherence and Quantum Optics V, New York: Plenum (1984).
  • Yurke and D. Stoler, Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion, Phys. Rev. Lett. 57 (1986) 13–16.
  • Roman-Ancheyta, M. Berrondo and J. Recamier, Parametric oscillator in a Kerr medium: evolution of coherent states, J. Opt. Soc. Am. B 32 (2015) 1651–1655.
  • I. Man’ko, G. Marmo, E. C. G. Sudarshan and F. Zaccaria, foscillators and nonlinear coherent states, Phys. Scr. 55 (1997) 528–541.
  • L. de Matos Filho and W. Vogel, Nonlinear coherent states, Phys. Rev. A 54 (1996) 4560–4563.
  • de. J. León-Montiel and H. Moya-Cessa, Generation of squeezed Schrödinger cats in a tunable cavity filled with a Kerr medium, J. Opt. 17 (2015) 065202.
  • V. Dodonov, M. A. Marchiolli, Y. A. Korennoy, V. I. Man’ko and Y. A. Moukhin, Dynamical squeezing of photon-added coherent states, Phys. Rev. A 58 (1998) 4087–4094.
  • Berrondo and J. Récamier, Dipole induced transitions in an anharmonic oscillator: a dynamical mean field model, Chem. Phys. Lett. 503 (2011) 180–184.
  • Wei and E. Norman, Lie algebraic solution of linear differential equations, J. Math. Phys. 4 (1963) 575–581.
  • Wei and E. Norman, On global representations of the solutions of linear differential equations as a product of exponentials, Proc. Am. Math. Soc. 15 (1964) 327–334.
  • R. Honarasa, M. K. Tavassoly and M. Hatami, Quantum phase properties associated to solvable quantum systems using the nonlinear coherent states approach, Opt. Commun. 282 (2009) 2192–2198.
  • Mandel, Sub-Poissonian photon statistics in resonance fluorescence, Opt. Lett. 4 (1979) 205–207.

R. Robinett, Quantum wave packet revivals, Phys. Rep. 392 (2004)1–119.