Document Type : Research

Authors

1 Physics Department, Persian Gulf University, Bushehr, Iran

2 Physics Department, Payame Noor University, Shiraz, Iran

Abstract

Optical and magneto-optical responses of magnetophotonic crystals (MPCs) with a magnetic defect layer sandwiched between two dielectric Bragg mirrors have been investigated, which have potential application in integrated-optics devices. The Bragg mirrors are periodic multilayered films composed of SiO2 and Ta2O5 coatings. By introducing Ce:YIG magnetic defect layer, the enhancement of rotation angle and transmittance value, have been reported. By using of Finite Element Method (FEM), we have simulated the electric field profile in MPCs and investigated the effect of defect layer thickness on Faraday rotation angles. As a result of localization of light at magnetic defect layer and strong light-matter coupling in MPCs, the magneto-optical responses of these structures, are mostly increased near the PBG edges. The structure with a half wavelength optical thickness of defect layer is most suitable for practical applications.

Keywords

 
References
[1] Fedyanin AA, Aktsipetrov OA,  Kobayashi D, Nishimura K, Uchida H,  Inoue M. Enhanced Faraday and nonlinear magneto-optical Kerr effects in magnetophotonic crystals. Journal of  Magnetism and Magnetic Mqaterials. 2004; 282: 256-259.
[2] Debendetti PG, Stanley EH. Supercooled and Glassy Water. Journal of Physics: Condensed Matter. 2003; 15(45): 40-46.
[3] Inoue M, Arai K, Fujii T, Abe M. One-dimensional magnetophotonic crystals. Journal of Applied Physics. 1999; 85(8): 5768-5770.
[4] Aguanno GD, Centini M, Scalora M, Sibilia C, Bloemer MJ, Bowden CM, Haus JW, Bertolotti M. Simultaneously phase-matched enhanced second and third harmonic generation. Physical Review E. 2001; 64(4): 046606.
[5] Dumeige Y, Sagnes I, Monnier P, Vidakovic P, Abram I, Meriadec C, Levenson A. Phase-matched frequency doubling at photonic band edges: efficiency scaling as the fifth power of the length. Physical Review Letters. 2002; 89(4): 043901.
[6] Dolgova TV, Maidikovsky AI, Martemyanov MG, Fedyanin AA, Aktsipetrov OA. Giant third-harmonic in porous silicon photonic crystals and microcavities, JETP Letters. 2002; 75(1):  15-19.
[7] Cowan AR, Young JF. Optical bistability involving photonic crystal microcavities and Fano line shapes. Physical  Review E. 2003; 68(4): 046606.
[8] J. D. Joannopoulos JD, Johnson SG, Winn JN, Meade RD, Photonic Crystals: Molding the Flow of Light. Princeton University Press: 2008.
[9] Fan S, Yanik MF, Wang Z, Sandhu S, Povinell ML. Advances in Theory of Photonic Crystals.  Journal of Lightwave Technology. 2006; 24(12): 4493-4501.
[10] Abdi-Ghale R, Asad M. Transmittance Magneto-Optical Responses of One-dimensional Magnetophotonic Hetero-structures. Acta Physica Polonica A.  2014; 126(3): 705-712.
[11] Kato H, Matsushita T, Takayama A, Nishimura K, Inoue M. Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals. Journal of Applied Physics. 2003; 93(7): 3906-3911.
[12] Takagi H, Tsuzuki A, Iwasaki K, Suzuki Y, Imura T, Umezawa H, Uchida H, Shin KH, Inoue M, Multiferroic magneto optic spatial light modulator with sputtered PZT film. Journal of Magnetics. 2006; 30: 581-583.
[13] Zvezdin AK, Kotov VA. Modern Magnetooptics and Magnetooptical Materials. CRC Press: 1997.
[14] Lyubchanskii IL, Dadoenkova NN, Lyubchanskii ML, Shapovalov EA, Rasing T, Magnetic photonic crystals. Journal of Physics D:Applied Physics. 2003; 36(18): 277-287.
[15] Inoue M, Fujikawa R, Baryshev A, Khanikaev A, Lim PB, Uchida H, Aktsipetrov O, Fedyanin A, Murzina T, Granovsky A. Magnetophotonic crystals, Journal of Physics D:Applied Physics. 2006; 39(8): 151-161.
[16] Zhang HF, Liu SB, Kong XK, Li BX. The characteristics of photonic band gaps for three-dimensional unmagnetized dielectric plasma photonic crystals with simple-cubic lattice. Optics Communications. 2013; 288: 82-90.
[17] Kumar M, Nautiyal T, Auluck S. Optical and magneto-optical properties of Fe4−xCox (x = 1–3). The European Physical Journal B. 2010; 73(3): 423-432.
[18] Dissanayake N, Levy M, Chakravarty A, Heiden PA, Chen N, Fratello V. Magneto-photonic crystal optical sensors with sensitive covers. Applied Physics Letters. 2011; 99(9): 091112.
[19] Wang Z, Fan S. Magneto-optical defects in two-dimensional photonic crystals. Applied Physics B. 2005; 81(2): 369-375.
[20] Belotelov VI, Akimov IA, Pohl M, Kotov VA, Kasture S, Vengurlekar AS, Gopal AV, Yakovlev DR, Zvezdin AK, Bayer M. Enhanced magneto-optical effects in magnetoplasmonic crystals. Nature Nanotechnology. 2011; 6: 370-376.
[21] Keller N, Mistrik J, Visnovsky S, Schmool DS, Dumont Y, Renaudin P, Guyot M, Krishnan R. Magneto-optical Faraday and Kerr effect of orthoferrite thin films at high temperatures. The European Physical Journal B. 2001; 21(1): 67-73.
[22] Mansuripour M. The Faraday Effect. OSA Publishing: Optics and Photonics News. 1999; 10(11): 32-36.
[23] Levy M, Jalali AA. Band structure and Bloch states in birefringent one-dimensional magnetophotonic crystals: an analytical approach. JOSA B. 2007; 24(7): 1603-1609.
[24] Lyubchanskii I, Dadoenkova N, Zabolotin A, Shyshmakov A, Boucher Y, Bentivegna F, et al., editors. One‐Dimensional Photonic Crystal With Realistic Interfaces: Effects of Misfit Strain. AIP Conference Proceedings; 2009: AIP.
[25] Koerdt C, Magneto-Spatial Dispersion Phenomena: Photonic Band Gaps and Chirality in Magneto-Optics. Konstanz: University Konstanz Fachbereich Physics: 2004.
[26] Volakis JL, A. Chatterjee A, Kempel LC. Finite element method electromagnetics: antennas, microwave circuits, and scattering applications. Wiley-IEEE Press: 1998.
[27] Humphries S. Finite Element Methods For Electromagnetics. NEW MEXICO: USA: 2010.