Document Type : Research

Authors

Abstract

In this paper, the electromagnetically induced transparency of an asymmetric quantum dot with Dresselhaus spin-orbit interaction and under the influence of external electric and magnetic fields is investigated. To study electromagnetically induced transparency, the dependence of absorption coefficient and refractive index of the probe light pulse on the Dresselhaus spin-orbit interaction strength, the electric and magnetic fields and dot size are measured and studied. The results show the considerable effects of Spin-Orbit Interaction and other mentioned parameters on the electromagnetically induced transparency of the system. It is possible to control electromagnetically induced transparency of typical systems via Spin-Orbit Interaction along with external fields and dimension.

Keywords

[1]   Tetlow H, Gradhand M. Semiconductor spintronics: Tuning the spin Hall effect in Si. Physical Review B. 2013;87(7):075206.
[2]   Linder J, Halterman K. Super-conducting spintronics with magnetic domain walls. Physical Review B. 2014;90(10):104502.
[3]   Splettstoesser J, Governale M, Zülicke U. Persistent current in ballistic mesoscopic rings with Rashba spin-orbit coupling. Physical Review B. 2003; 68(16): 165341.
[4]   Sheng J, Chang K. Spin states and persistent currents in mesoscopic rings: Spin - orbit interactions. Physical Review B. 2006; 74(23): 235315.
[5]   Ding G-H, Dong B. Spin-orbit coupling effect on persistent currents in a one-dimensional quantum ring with an Anderson impurity. Physical Review B. 2007;76(12):125301.
[6]   Sun Q-f, Xie X, Wang J. Persistent spin current in a mesoscopic hybrid ring with spin-orbit coupling. Physical review letters. 2007; 98(19): 196801.
[7]   Huang G-Y, Liang S-D. Orbital magnetic phase and pure persistent spin current in spin-orbit coupling mesoscopic rings. EPL (Europhysics Letters). 2009; 86(6): 67009.
[8]   Vaseghi B, Rezaei G, Malian M. Spin–orbit interaction effects on the optical properties of spherical quantum dot. Optics Communi-cations. 2013; 287: 241-4.
[9]   Winkler R, Papadakis S, De Poortere E, Shayegan M. Spin-Orbit Coupling in Two-Dimensional Electron and Hole Systems: Springer; 2003.
[10] Dresselhaus G. Spin-orbit coupling effects in zinc blende structures. Physical Review.
[11] Rashba E, Sheka V. Combined resonance in electron InSb. Soviet Physics - Solid State. 1961; 3(6): 1357-62.
[12] Bychkov YA, Rashba EI. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. Journal of physics C: Solid state physics. 1984; 17(33): 6039.
 [13]     Baskoutas S, Paspalakis E, Terzis A. Electronic structure and nonlinear optical rectification in a quantum dot: effects of impurities and external electric field. Journal of Physics: Condensed Matter. 2007; 19(39): 395024.
[14] Li S-S, Xia J-B. Electronic structure and binding energy of a hydrogenic impurity in a hierarchically self-assembled GaAs∕ Al x Ga 1− x As quantum dot. Journal of applied physics. 2006; 100(8): 083714.
[15] Akgül S, Şahin M, Köksal K. A detailed investigation of the electronic properties of a multi-layer spherical quantum dot with a parabolic confinement. Journal of Lumine-scence. 2012; 132(7): 1705-13.
[16] He L, Xie W. Effects of an electric field on the confined hydrogen impurity states in a spherical parabolic quantum dot. Super-lattices and Microstructures. 2010; 47(2): 266-73.
[17] Dehyar A, Rezaei G, Zamani A. Electronic structure of a spherical quantum dot: Effects of the Kratzer potential, hydrogenic impurity, external electric and magnetic fields. Physica E: Low-dimensional Systems and Nanostructures. 2016; 84: 175-81.
[18] Marcinkevičius S, Gushterov A, Reithmaier J. Transient electro-magnetically induced transparency in self-assembled quantum dots. Applied Physics Letters. 2008; 92(4): 041113.
[19] Barettin D, Houmark J, Lassen B, Willatzen M, Nielsen TR, Mørk J, et al. Optical properties and optimization of electromagnetically induced transparency in strained InAs/GaAs quantum dot structures. Physical Review B. 2009; 80(23): 235304.
[20] Harris S, Field J, Kasapi A. Dispersive properties of electromagnetically induced transparency. Physical Review A. 1992;46(1):R29.
[21] Fleischhauer M, Imamoglu A, Marangos JP. Electromagnetically induced transparency: Optics in coherent media. Reviews of modern physics. 2005; 77(2): 633.
[22] Kasapi A, Jain M, Yin G, Harris SE. Electromagnetically induced transparency: propagation dynamics. Physical review letters. 1995; 74(13): 2447.
[23] Scully MO, Zubairy MS. Quantum optics: Cambridge university press; 1997.
[24] Jahromi AS, Rezaei G. Electro-magnetically induced transparency in a two-dimensional quantum pseudo-dot system: Effects of geometrical size and external magnetic field. Physica B: Condensed Matter. 2015; 456: 103-7.
[25]      Vaseghi B, Mohebi N. Effects of external fields, dimension and pressure on the electromagnetically induced transparency of quantum dots. Journal of Luminescence. 2013;134:352-7