Document Type : Research

Authors

Abstract

In this paper, properties of optical soliton and their propagation on the basis of Generalized Nonlinear Schrödinger Equation in optical fiber is investigated. Analytical and numerical methods is used for solution of partial differential equations and Fourier transform based on time frequency to show solitons in the area of nonlinear scattering. We analyzed the behavior of solitons with solution of nonlinear Schrödinger equation and by using SSFM that is a very efficient way and it is possible to study the composition of the solitons and behavior of high order solitons.

Keywords

[1] 1. J S Russell, British Association Report (John urray, London,1984).
[2] N J Zabusky and M D Kruskal, Phys. Rev. Lett. 15 (1965) 240.
[3] M Segev, B Crosignani, A Yariv and B Fischer, Phys. Rev. Lett. 68 (1992) 923.
[4] G Duree et al, Phys. Rev. Lett. 71 (1993) 533.
[5] M Segev, et al., Phys. Rev. Lett. 73 (1994) 3211.
[6] D N Christodoulides and M I Carvolho, J Opt. soc. Am. B12 (1995) 1628.
[7] M Shih, et al., Electron, Lett. 31 (1995) 826.
[8] M Shih, et al., Opt, Lett. 21 (1996) 324.
[9] M D Iturbe-Castillo, et al., Appl Phys. lett. 64 (1994) 408.
[10] V. E. Zakharov and B. A. Malomed, Physical Encyclopedia, (Great Russian Encyclopedia, Moscow, 1994).
[11] Agrawal, Govind P ,Fiber-Optic Communication Systems (John Wiley,2002, p404-415).
[12] F.S.Ferreira, ,Nonlinear Effects in Optical Fibers (John Wiley, p155-192)
[13] Gerd Keiser, Optical Fiber communic-ations, (McGraw-Hill, 2011, p482-488)
[14] G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. San Francisco, CA, USA: Academic Press, 2012.
[15] Y. S. Kivshar and G. P. Agrawal, “Optical Solitons: From Fibers to Photonic Crystals,” USA, Elsevier Science, 2003.
[16] S Balac, F Mahé. Journal of Computational Physics, Volume 280 Issue C, January 2015 Pages 295-305
[17] G. C. Valley et al., Phys. Rev. A 50 (1994) R4457.
[18] Fedor Mitscheke, Fiber Optics physics and Technology (Springer 2009,p153-178)
[19] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, ”The Inverse Scattering Transform - Fourier Analysis for Nonlinear Problems”, Stud. Appl. Math., Vol. 53, No. 4, 249-315, December 1974.