Document Type : Research

Authors

Abstract

In this paper, we first described briefly the non-linear system and its solitray kink and anti-kink solutions in a  dimensional space-time. We showed that there will be an internal channel for the low amplitude oscillations for the kink (anti-kink) solutions. For such oscillations with specific velocity dependent frequencies and wavelengths, there are the similar wave-particle relations to the standard quantum mechanical ones. Finally, we showed numerically that in the collisions between kink-ant kink pairs, the output results are completely dependent on the initial phases of the oscillations which are imposed on the kink-ant kink pairs. In other words, the uncertainty created in the output of the same collisions is due to a quantity that does not in any way play a role in the particle properties, which can be called a hidden variable.

Keywords

[1] R. Rajaraman, Solitons and Instantons, Elsevier, Amsterdam, 1982.
[2] A. Das, Integrable Models, World Scientific, Singapore, 1989.
[3] G. L. Lamb, Jr., Elements of Soliton Theory, Wiley, New York, 1980.
[4] P. G. Drazin and R. S. Johnson, Solitons: an Introduction, Cambridge University Press,Cambridge, UK, 1989.
[5] R. Khomeriki and J. Leon, Phys. Rev. E 71 (2005) 056620.
[6] N. Riazi, A. Azizi and S. M. Zebarjad, Phys. Rev. D 66 (2002) 065003.
[7] L. V. Yakushevich, Nonlinear Physics of DNA, Wiley, 2004.
[8] L. V. Yakushevich, A. V. Savin and L. I. Manevitch, Phys. Rev. E 66 (2002) 016614.
[9] S. Cuenda, A. Sanchez and N. R. Quintero, Physica D223 (2006) 214.
[10] J. Timonen, M. Stirland, D. J. Pilling, Y. Cheng and R. K. Bullough, Phys. Rev. Lett. 56 (1986) 2233.
[11] D. K. Campbell and M. Peyrard, Physica D19 (1986) 165.
[12] D. K. Campbell and M. Peyrard, Physica D18 (1986) 47.
[13] D. K. Campbell, J. S. Schonfeld, and C. A. Wingate, Physica D9 (1983) 1.
[14] M. Peyrard and D. K. Campbell, Physica D9 (1983) 33.
[15] R. H. Goodman and R. Haberman, Siam J. Appl. Dyn. Syst. 4 (2005) 1195.
[16] A. R. Gharaati, N. Riazi and F. Mohebbi, Int. J. Theor. Phys. 45 (2006) 57.
[17] M. Mohammadi and N. Riazi, Prog. Theor. Phys. 126 (2011) 237.
[18] M. Mohammadi, N. Riazi, and A. Azizi,
Prog.Theor. Phys. 128 (2012) 615.
[19] S. Hoseinmardi and N. Riazi, Int. J. Mod. Phys. A 25 (2010) 3261.
[20] M. Mohammadi, N. Riazi, Prog. Theor. Exp. Phys 023 A03 (2014).
[21] Dorey, Patrick et al., JHEP 1705 (2017) 107.
[22] Dorey, Patrick et al., Phys. Rev. Lett. 107, (2011) 091602.
[23] T. H. R. Skyrme, Proc. Roy. Soc. A260 (1961) 127.
[24] G. ’t Hooft, Nuclear Physics B79 (1974) 276.
[25] A. M. Polyakov, JETP Lett. 20 (1974) 194.
[26] G. H. Derrick, Journal of Mathematical Physics 5 (1964) 1252.
[27] R. Friedberg, T. D. Lee and A. Sirlin Phys. 13 (1976) 2739.
[28] J. Werle. Acta Phys. Pol. B12 (1981) 601.
[29] N. Riazi, Int. J. Theor. Phys. 50 (2011) 3451.
[30] R. Abazari and S. Jamshidzadeh, Optik vol. 126 (2015) 1970-1975.