Document Type : Research

Authors

Abstract

Photonic crystal fibers (PCFs) are new class of optical fibers which have great potentials and various applications. In this article, we investigate and simulate the impacts of structural parameters on mode characteristics of PCFs in telecommunication region that little attention has been paid to it by using CUDOS MOF software. Here, PCFs are simulated in two different schemes: one with increasing the number of air rings in the cladding area and the other one with increasing the filling fraction; and then the best PCF for the single-mode operation in telecommunication region with the lowest confinement loss is introduced. Also, the wavelength dependence of the loss, effective mode area, and effective mode refractive index is simulated. The results show that with increasing the number of air rings in the cladding as well as the air filling fraction, the PCF losses, effective mode area, and effective mode refractive index are decreased. Moreover, with increasing the wavelength, the effective refractive index is decreased while and the loss and the effective mode area are increased. 

Keywords

[1]  F. Poli, A. Cucinotta, S. Selleri, Photonic crystal fibers: properties and applications, Springer Science & Business Media, (2007).
[2]  M. Ebnali-Heidari, H. Saghaei, F. Koohi-Kamali, M. Naser MoghadasiM. K. Moravvej-Farshi, Proposal for supercontinuum generation by optofluidic infiltrated photonic crystal fibers, Selected Topics in Quantum Electronics, IEEE Journal 20 (2014) 582-589.
[3]  S. A. Cerqueira Jr, Recent progress and novel applications of photonic crystal fibers, Reports on progress in physics 73 (2010) 024401.
[4]  A. M. Pinto, M. Lopez-Amo, Photonic crystal fibers for sensing applications, Journal of Sensors, (2012).
[5]  A. Khetani, J. Riordon, V. Tiwari, A. Momenpour, M. Godin, H. Anis, Hollow core photonic crystal fiber as a reusable Raman biosensor, Optics express 21 (2013) 12340-12350.
[6]  M. Taghizadeh, M. Hatami, H. Pakarzadeh, and M. K. Tavassoly, Pulsed optical parametric amplification based on photonic crystal fibres, Journal of Modern Optics, (2016).
[7]  J. C. Knight, Photonic crystal fibers and fiber lasers, JOSA B 24 (2007) 1661-1668.
[8]  Md. Faizul Huq Arif and Md. Jaminul Haque Biddut, A new structure of photonic crystal fiber with high sensitivity, high nonlinearity, high birefringence and low confinement loss for liquid analyte sensing applications, Sensing and Bio-Sensing Research 12 (2017) 8-14.
[9]  G. P. Agrawal, Nonlinear Fiber Optics, New York: Academic, (2013).
[10]             P. Yeh, A. Yariv, E. Marom, Theory of Bragg fiber, JOSA 68 (1978) 1196-1201.
[11]             J. C. Knight, T. A. Birks, P. St. J. Russell, M. D. Aktin, All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett 21 (1996) 1547-1549.
[12]             P. St.J. Russell, Photonic crystal fibers, Science, (2003).
[13]             J. Broeng, D. Mogilevstev, S. E. Barkou, A. Bjarklev, Photonic crystal fibers: A new class of optical waveguides, Optical fiber technology 5 (1999) 305.
[14]             T. A. Birks, J. C. Knight, P. S. J. Russell, Endlessly single mode photonic crystal fibre, Opt. Lett 22 (1997) 961–963.
[15]             N. A. Mortensen, Effective area of photonic crystal fibers, Optics Express 10 (2002) 341-348.
[16]             M. Liu, J. Yang, T. Zhu, Design of large-mode-area multi-core photonic crystal fibers with low confinement loss and dispersion, JETP Letters 102 (2015) 274-278.
[17]             W. Cai, E. Liu, B. Feng, H. Liu, Z. Wang, W. Xiao, J. Liu, Dispersion properties of a photonic quasi-crystal fiber with double cladding air holes, Optik-International Journal for Light and Electron Optics 127 (2016) 4438-4442.
[18]             L. Shen, W. P. Huang, G. Chen,S. Jian, Design and optimization of photonic crystal fibers for broad-band dispersion compensation, IEEE Photon. Technol. Lett 15 (2003) 540–542.
[19]             F. Poli, A. Cucinotta, S. Selleri, A. Bouk, Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers, IEEE Photon.Technol. Lett 16 (2004) 1065–1067.
[20]             H. Saghaei, V. Heidari, M. Ebnali-Heidari, M. R Yazdani, A systematic study of linear and nonlinear properties of photonic crystal fibers, Optik 127 (2016) 11938–11947.
[21]             http://sydney.edu.au/science/physics/cudos/research/mofsoftware.shtml.
[22]             Y. S. Lee, C. G. Lee, Y. Jung, S. Kim, Diamond unit cell photonic crystal fiber with high birefringence and low confinement loss based on circular air holes, Applied optics 54 (2015) 6140-6145.
[23]             D. K. Sharma, A. Sharma. On the mode field diameter of microstructured optical fibers, Optics Communications 291 (2013) 162-168.
[24]             A. Bjarklev, J. Broeng, A. S. Bjarklev, Photonic crystal fibres, Springer Science & Business Media, (2012).
N. Karasawa, Dispersion properties of liquid crystal core photonic crystal fibers calculated by a multipole method modified for anisotropic inclusions, Optics Communications 338 (2015) 123–127.