Document Type : Research

Authors

1 M.Sc. Student in Physics, Faculty of Science, Yasouj University, Yasouj, Iran.

2 Professor, Physics, Faculty of science, Yasouj University, Yasouj, Iran

3 Assistant Professor, Physics, Faculty of Science, Yasouj University, Yasouj, Iran.

Abstract

A two-electron quantum disc under harmonic confinement potential and uniform magnetic field normal to surface disc is considered. In this regard, a change of variable is used and the total Hamiltonian is divided into center of mass and relative-motion part Hamiltonians. The Schrodinger equations of each part are analytically solved, and the wave functions and the eigen values energy are obtained. To study the tunneling effect, a constant confinement potential for the barrier region is considered, and the quantum transmission coefficient is calculated in terms of height and barrier width and magnetic field. Results show that the transmission coefficient decreases with increasing height and width barrier, and increases with the magnetic field.

Keywords

[1] M. J. Karimi, G. Rezaei, Effects of external electric and magnetic fields on the linear and nonlinear intersubband optical properties of finite semi-parabolic quantum dots, Physica B 406(23) (2011) 4423
[2] B. Vaseghi, G. Rezaei, Z. Moini, S.H. Hendi, F. Taghizadeh, Effects of external magnetic field on the electron Zitterbewegung in the quantum dots and wires with Rashba spin–orbit interaction, Superlattice and Microstructures 49(4) (2011) 373
[3] V. Fock, Bemerkung zur Quantelung des harmonischen Oszillators im Magnetfeld, Z. Phys. 47 (1928) 446
[4] C. G. Darwin, The Diamagnetism of the Free Electron, Proc. Camb. Phil. Soc. 27 (1931) 86. Published online by Cambridge University Press: 24 October 2008
[5] L. Jack, P. Hawrylak, A. Wojs, Quantum Dots, Springer, New York, 1998.
[6] M. Wagner, U. Merkt, A. V. Chaplik, Spin-singlet–spin-triplet oscillations in quantum dots, Phys. Rev. B 45 (1992) 1951
[7] B. Kandemir, Variational study of two-electron quantum dots, Phys. Rev. B 72 (2005) 165350
[8] S.H. Ganjipour, E. Sadeghi, Two Interacting Atoms in a Two-Dimensional Anharmonic Trap Potential, Optoelectronic, Spring (2024) 6(3) 1-6, DOI: 10.30473/jphys.2023.69879.1177
[9] I.S. Ishmukhamedov, A.S. Ishmukhamedov, Tunneling of two interacting atoms from excited states, Physica E 109 (2019) 24
[10] S. E. Gharashi, D. Blume, Tunneling dynamics of two interacting one-dimensional particles, Phys. Rev. A 92 (2015) 033629
[11] S. Chaudhuri, Two-electron quantum dot in a magnetic field: Analytic solution for finite potential model, Physica E 128 (2021) 114571
[12] S. Chaudhuri, Electron tunneling energies of a quantum dot in a magnetic field, Physica E 144 (2022) 115425
[13] A. Ranni, E. T. Manila, A. Eriksson, et al., Local and Nonlocal Two-Electron Tunneling Processes in a Cooper Pair Splitter, Phys. Rev. Lett. 129 (2022) 207703
[14] M. Zhu, J. Tong, X. Liu, et al., Tunnelling of electrons via the neighboring atom, Light: Science& Applications 13:18 (2024) 1-8
[15] J. J. Sakurai, Modern Quantum Mechanics, Addison-wesley publishing Co. 1994