Document Type : Research

Authors

1 Ph.D, Department of Physics Education, Farhangian University, Tehran, Iran.

2 Professor, Photonics Department, Research Institute for Applied Physics & Astronomy (RIAPA), University of Tabriz, Tabriz, Iran.

Abstract

The increasing use of group III nitride structures in electro-optical devices, as well as the development of studies on the light-emitting structures and optical properties of these devices, including lasers, photodiodes, and detectors, have caused intense interest of scientists in this field. Since in some cases the size of the diameter of the nanowire was not suitable for observing the quantum confinement effects, combinations of quantum wells resulting from different structures of growth and layering inside the nanowires, known as hybrid structures, have been considered. These quantum wells are formed directly on the faces of the nanowires or along the axis and create the proper arrangement to induce quantum confinement effects. In this article, a suitable numerical solution defined for accurate calculation of band structure, wave functions, carrier probability density and its distribution, and the luminescence spectrum caused by spontaneous emission due to pollution in this system. Also, in this article, the effects of polarization are investigated in theoretical calculations based on the structural information of AlGaN/GaN hybrid semiconductor nanowires in two forms, quantum disk and core-shell, and its effect on emission luminescence is calculated, which can be obtained with widely used experimental samples. It is a comparison. The performed numerical calculations are based on the self-consistent solution of Schrödinger and Poisson, along with explanation of how the particles move and their distribution probability, which is very good in terms of accuracy compared to similar works

Keywords

[1] S.L. Chung, Physics of Photonic Devices WILEY. Inc.. Hoboken. New Jersey, 2009, ISBN 978-0-470-29319-5
[10] D. O. Olawale, O. O. I. Okoli, R. S. Fontenot, W. A. Hollerman, Triboluminescence Theory, Synthesis, and Application, Springer, 2016, ISBN 9783319388410.
[11] A. J.Bard, Electrogenerated Chemiluminescence, American Chemical Society, 2005, ISBN 0-8247-5347-X
[12] A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd Edition, Wiley, 2001, ISBN 9780471043720.
[13] A. Bertoni, M. Royo, F. Mahawish, G. Goldoni, Electron and hole gas in modulation-doped GaAs/AlGaAs radial heterojunctions, Phys. Rev. B. 84 (2011) 205323. doi:10.1103/PhysRevB-.84.205323.
[14] B. Valer, Molecular Fluorescence Principles and Applications, 2nd Edition, (2012) 32, ISBN: 978-3-527-32837-6.
[15] J. Jadczak, P. Plochocka, A. Mitioglu, I. Breslavetz, M. Royo, A. Bertoni, et al., Unintentional High-Density p-Type Modulation Doping of a GaAs/AlAs Core–Multishell Nanowire, Nano Lett. 14 (2014) 2807–2814. doi:10.1021/nl500818k.
[16] N. K. Shinde, S. J. Dhoble, H.C. Swart, K. Park, Basic Mechanisms of Photoluminescence, Phosphate Phosphors for Solid-State Lighting (2012), 41-59, ISBN: 978-3-642-34312-4
[17] A. Alkauskas, J. L. Lyons, D. Steiauf, C. Van, First-Principles Calculations of Luminescence Spectrum Line Shapes for Defects in semiconductor: The Example of GaN and Zno, Phys. Rev. Lett. 109, 267401 (2012), doi: 10.1103/PhysRevLett.109.267401
[18] P. Harrison, Quantum Wells, Wires and Dots, WILEY 2nd ed., UK, 2005, ISBN 978-0-470-01079-2.
[19] M. Bryan, L. Francois, Q. Li, G.T. Wang, Nanoscale Effects on Heterojunction Electron Gases in GaN / AlGaN, Nano Lett. (2011) 3074–3079. doi:10.1021/nl200981x.
[2] Namvari, E., Shojaei, S., Asgari, A. The Study of Electronic Structure and Luminescence Spectrum of Core-Multi Shell Semiconductor Nano Wire. Quarterly Journal of Optoelectronic, 2017; 1(4): 53-58.
[20] M. Behpour, M. Golestaneh, E. Honarmand, Luminescence spectroscopy, Jangal, Javedaneh, 1387, ISBN 9789642573783.
[21] M. Kalafi, A. , Asgari, The behavior of two-dimensional electron gas in GaN/AlGaN/GaN heterostructures with very thin AlGaN barriers, Phys. E. 19 (2003) 321–327. doi:10.1016/S1386-9477(03)00377-1.
[22] M. Royo, A. Bertoni, G. Goldoni, Landau levels, edge states, and magnetoconductance in GaAs/AlGaAs core-shell nanowires, Phys. Rev. B. 87 (2013) 115316. doi:10.1103/PhysRevB. 87.115316.
[23] E. Namvari, S. Shojaei, A. Asgari, Luminescence Emission from Al0.3 Ga0.7 N/GaN Multi Quantum Disc core/shell Nanowire: Numerical approach, Phys. E Low-Dimensional Syst. Nanostructures. 93 (2017) 132–142. doi:10.1016/j.physe.2017.06.002
[24] E. Namvari, S. Shojaei, A. Asgari, Luminescence Emission from Nonpolar Al0.3Ga0.7N/GaN Core-shell and core-multi-shell Nanowires, superlattice and microstructures, 112(2017), 118-127
[3] J. Ristic, C. Rivera, E. Calleja, A. Cario, Carrier-confinement effects in nanocolumnar GaNAlxGa1−xN quantum disks grown by molecular-beam epitaxy, Physical Review B 72(8), 2005, doi: 10.1103/PhysRevB.72.085330.
[4] M. Tchernycheva, C. Sartel, G. Cirlin, L. Travers, G. Patriarche, J.-C. Harmand, et al., Growth of GaN free-standing nanowires by plasma-assisted molecular beam epitaxy: structural and optical characterization, Nanotechnology. 18 (2007) 385306. doi:10.1088/0957-4484/18/38/385306.
[5] G. Jacopin, F.H. Julien, F. Furtmayr, et al., Photoluminescence polarization properties of single GaN nanowires containing AlxGa1−x/GaN quantum discs, Phys. Rev. B. 81 (2010) 45411. doi:10.1103/PhysRevB.81.045411.
[6] G. Jacopin, L. Rigutti, J. Teubert, F.H. Julien, F. Furtmayr, P. Komininou, et al., Optical properties of GaN-based nanowires containing a single Al0:14Ga0:86N/GaN quantum disc, Nanotechnology. 24 (2013) 125201. doi:10.1088/0957-4484/24/12/125201.
[7] U. Mishra, J. Singh, Semiconductor device physics and design, 2007. doi:10.1007/978-1-4020-6481-4.
[8] H. Morkoc, Handbook of Nitride Semiconductors and Devices, Volume 1, Materials Properties, Physics and Growth, 2009, ISBN: 978-3-527-62846-9.
[9] P.K. Basu, Theory of optical processes in Semiconductors, Oxford Science Publication, United Sttate, 1997, ISBN 0-19-851788-2.
[25] M. Mata, X. Zhou, F.Furtmayr, A review of MBE grown 0D, 1D and 2D quantum structures in a nanowire, Journal of Materials Chemistry C, 2013(1), 4300-4312, doi: 10.1039/c3tc30556b.