Document Type : Research

Authors

1 PH.D Student, Department of Physics, Faculty of Science, Shahrekord University, Shahrekord, Iran

2 Department of Physics, Faculty of Science, Shahrekord University, Shahrekord, Iran

Abstract

In the present work, we have simulated the vacancy-ordered double perovskites Cs2TiX6 (X = Cl, Br or I) using ab initio calculations. The structural and electronic properties of the Ti-based perovskites show high stability and suitable band gap for them. The direct band gap predicted by the calculations decreases with increasing atomic radius of the halide and is relatively well aligned with the reported theoretical and experimental values. Also, by calculating the absorption spectrum, several optical properties for these materials have been studied, which show excellent optical absorption for these compounds, especially the iodide perovskite. These properties make this group of halide perovskites suitable candidates for photovoltaic applications.

Keywords

[1] E Kabir, et al., Renew Sustain Energy Rev 82 (2018) 894–900. https://doi.org/10.1016/j.rser.2017.09.094
[2] NREL, Best research-cell efficiency chart. https://www.nrel.gov/pv/cell-efficiency.html .
[3] S J Adjogri and E L Meyer, Molecules. 25(21) (2020) 5039. https://doi.org/10.3390/molecules25215039
[4] L Chu, et al., Nano-Micro. Lett. 11(1) (2019) 1-18.  https://doi.org/10.1007/s40820-019-0244-6
[5] T. Kirchartz and U Rau, Adv. Energy Mater. 8(28) (2018)1703385. https://dx.doi.org/10.1021/acsenergylett.0c00039
[6] S. Ahmed, et al. ACS Appl Energy Mater, 7(4), (2024) 1382-1397 https://doi.org/10.1021/acsaem.3c02327
[7] A. E. Magdalin, et al. Results Eng, (2023) 101438.‏ https://doi.org/10.1016/j.rineng.2023.101438
[8] X Wang, et al., Mater. Chem. Front. 3(3) (2019) 365-375. https://doi.org/10.1039/C8QM00611C
[9] N S Arul, V D Nithya (eds.) , Revolution of Perovskite, Materials Horizons: From Nature to Nanomaterials, Springer Nature Singapore Pte Ltd,  2020.  https://doi.org/10.1007/978-981-15-1267-41
[10] V. Pecunia, et al., Lead-free halide perovskite photovoltaics: Challenges, open questions, and opportunities. APL Mater 8(10) (2020) 100901. https://doi.org/10.1063/5.0022271
[11] Q A Akkerman, and L Manna, ACS Energy Lett. 5(2) (2020) 604-610 https://dx.doi.org/10.1021/acsenergylett.0c00039
[12] X G Zhao, et al., Joule. 2(9) (2018) 1662-1673. https://doi.org/10.1016/j.joule.2018.06.017 .
[13] M. G. Ju, et al., ACS Energy Lett. 3(2) (2018) 297-304. https://doi.org/10.1021/acsenergylett.7b01167
[14] M. Chen, et al., Joule. 2(3) (2018) 558-570. https://doi.org/10.1016/j.joule.2018.01.009
[15] A. Ashfaq, et al. Mater Today Commun, 35, (2023). 106016.‏ https://doi.org/10.1016/j.mtcomm.2023.106016
[16] P. Zhao, et al., Nano. Res. 15(3) (2022) 2697-2705.‏ https://doi.org/10.1007/s12274-021-3801-5
[17] I. Chabri, A. Oubelkacem, and Y. Benhouria, In: E3S Web of Conferences .336(00050) EDP Sciences. (2022). https://doi.org/10.1051/e3sconf/202233600050
[18] S. S. Urmi, et al. Nanomaterials,13(14), (2023) 2100. https://doi.org/10.3390/nano13142100
[19] M. K. Hossain, et al. Adv Electron Mater, (2024) 2400348.‏  https://doi.org/10.1002/aelm.202400348
[20] K. Shivesh, et al. Int J Energy Res 46, (2022)6045. https://doi.org/10.1002/er.7546
[21] M. Mottakin, et al. Optik, 272, (2023) 170232. https://doi.org/10.1016/j.ijleo.2022.170232
[22] P. Hohenberg, and W. Kohn, J. Phys. Rev. 136 (1964) 864. https://doi.org/10.1103/PhysRev.136.B864
[23] W. Kohn, and L. Sham, J. Phys. Rev. 140 (1965) 1133. https://doi.org/10.1007/978-3-662-10421-7_30 .
[24] E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52 (1984) 997. https://doi.org/10.1103/PhysRevLett.52.997
[25] M. A. L. Marques, et al., Time-dependent density functional theory, LectureNotes in Phys. Spring-verlag, Berlin and Heidelberg, (2006).
[26] D. Rocca, SISSA PhD thesis, unpublished; available on the web at URL: http://www.sissa.it/cm/thesis/2007/Dario Rocca PhD Thesis.pdf
[27] D. Rocca, et al., J Chem Phys 128 (2008) 154105. https://doi.org/10.1063/1.2899649
[28] O. B. Malcıoglu, R. Gebauer, D. Rocca, and S. Baroni Comput Phys Comm 182(8) (2011) 1744-1754. https://doi.org/10.1016/j.cpc.2011.04.020
[29] X. Ge et al., Comput. Phys. Comm. 185(7), (2014), 2080-2089. https://doi.org/10.1016/j.cpc.2014.03.005
[30] X. Qian, et al., Phys. Rev. B 73 (2006) 035408. https://doi.org/10.1103/PhysRevB.73.035408
[31] M. Martynow, et al., Chem. Phys. Chem. 20(23) (2019) 3228-3237. https://doi.org/10.1002/cphc.201900824
[32] M. Pazoki, and T. Edvinsson, Phys. Rev. B, 100(4) (2019) 045203. ‏https://doi.org/10.1103/PhysRevB.100.045203
[33] P. Giannozzi, et al., J. Phys.: Condens. Matter. 29(46) (2017) 465901. https://doi.org/10.1088/1361-648X/aa8f79
[34] P. Giannozzi, et al., J. Chem. Phys. 152(15) (2020) 154105. https://doi.org/10.1063/5.0005082
[35] B. Walker, and R. Gebauer, J. Chem. Phys. 127 (2007) 164106. http://dx.doi.org/10.1063/1.2786999 .
[36] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868 http://dx.doi.org/10.1103/PhysRevLett.77.3865
[37] H. J. Monkhorst, and J. D. Pack, Phys. Rev. B 13 (1976) 5188. https://doi.org/10.1103/PhysRevB.13.5188
[38] F. D. Murnaghan, Natl. cad. Sci. USA, 30 (1944) 244-247. https://doi.org/10.1073/pnas.30.9.244
[39] W. Li, et al., J. Solid State Chem. 284 (2020) 121213. https://doi.org/10.1016/j.jssc.2020.121213
[40] K. Chakraborty et al., J. Nano- Electron. Phys. 13(3) (2021) 03009. https://doi.org/10.21272/jnep.13(3).03009.
[41] M. Tsuyama, and S. Suzuki, J. Phy. Soc. Jpn. 88(10) (2019) 104802. https://doi.org/10.7566/JPSJ.88.104802. ‏
[42] C. Kaewmeechai, Y. Laosiritaworn and A. P. Jaroenjittichai, Results Phys, 25 (2021) 104225. https://doi.org/10.1016/j.rinp.2021.104225
[43] J. Euvrard, et al., J. Mater. Chem.A 8(7) (2020) 4049-4054. https://doi.org/10.1039/C9TA13870F
[44] D. Liu, et al., RSC Adv. 10(60) (2020) 36734-36740. https://doi.org/10.1039/D0RA07586H
[45] Q. Mahmood, et al., Mater. Sci. Semicond. Process. 137 (2022) 106180 https://doi.org/10.1016/j.mssp.2021.106180
[46] A. Natik, et al., Solid State Commun. 319 (2020) 114006. ‏https://doi.org/10.1016/j.ssc.2020.114006.
[47] D. Liu, and R. Sa, Opt. Mater. 110 (2020)110497. https://doi.org/10.1016/j.optmat.2020.110497
[48] D. Kong, et al., J. Mater. Chem. C 8(5) (2020) 1591-1597. https://doi.org/10.1039/C9TC05711K‏‏  
[49] K. Chakraborty, M. G. Choudhury, and S. Paul, Sol. Energy 194 (2019) 886-892. https://doi.org/10.1016/j.solener.2019.11.005  
[50] Center for Autonomous Materials Design, Materials Science, Duke University http://www.aflowlib.org/material/?id=aflow:c99de34a4b979aa7.
[51] W. Rahim, et al., Chem. Mater. 32(22) (2020) 9573-9583. https://doi.org/10.1021/acs.chemmater.0c02806.
[52] A. E. Fedorovskiy, N. A. Drigo, and M. K. Nazeeruddin, Small Methods. 4(5) (2020) 1900426. https://doi.org/10.1002/smtd.201900426
[53] H. A. Maddah, et al., Comput. Mater. Sci. 173 (2020) 109415. https://doi.org/10.1016/j.commatsci.2019.109415
[54] C. Li, et al., Acta Crys. Sect. B: Struct. Sci. 64 (2008) 702-707. https://doi.org/10.1107/S0108768108032734
[55] Z. Xiao, and Y. Yan, Adv. Energy Mater. 7(22) (2017) 1701136. https://doi.org/10.1002/aenm.201701136
[56] R. D. Shannon, Acta Crystallogr. Sect. A 32(5) (1976) 751-767. https://doi.org/10.1107/S0567739476001551
[57] I. Arora, et al., Inorg Chem Commun ,143 (2022) 109700. https://doi.org/10.1016/j.inoche.2022.109700