Document Type : Research

Authors

1 Payame Noor Univesity - Eastern Tehran Branch

2 Department of Physics, Payam Noor University, P.O. 19395-4697, Tehran, Iran

Abstract

Today, among the renewable energies, the use of photovoltaic systems, which convert the energy of sunlight directly into electrical energy without producing toxic substances, have received much attention, and despite the extensive development of solar cells and due to their decentralized use, they are often placed on the roofs of buildings in cities. They face issues such as rapid sedimentation and absorption of pollutants, as a result, the rate of transmission and absorption of the cell's efficiency decreases. On the other hand, the process of cleaning the surface of solar cells is expensive and causes a waste of water.
In this research, the goal is to make a hybrid nanostructured membrane including polysulfone and reduced graphene oxide (PSf/rGO) to improve the efficiency, stability and self-cleaning of the solar cell. This coating increases the stability of solar panels under atmospheric conditions with its water repellency, self-cleaning ability and reduction of light reflection. For the preparation of rGO/PSf hydrophobic membranes, polysulfone has been used among the polymers due to its unique properties, including easy preparation, elastic transparency, and its hydrophobicity. was prepared. SEM, BET, FTIR, FESEM, and contact-angle analyzes were used to check the optimal rGO/PSf layer in the structure. By adding weight percentages (1%, 2%, 4%, 6%) of rGO, the roughness and hydrophobicity of this membrane increases. Nowadays, this membrane is used in various fields such as solar cells, textile industry, etc.

Keywords

[1] Aghbolaghi S., Mohammadi-Vanyar O., and Abbaspoor S. (2021). Stabilization of Polymer Solar Cells and Their Importance in Photovoltaic System: A Review, Iran. J. Polym. Sci. Technol. (Persian), 34,99-129.
[2] Shi, D., Adinolfi, V., Comin, R., Yuan, M., Alarousu, E., Buin, A., & Sargent, E. H. (2015). Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 347(6221), 519-522.
[3] Kusuma, D. M., Alfaruqi, M. H., Wang, C. H., & Wu, K. C. (2020). Poly (sulfone) based membranes for carbon dioxide capture: A review. Journal of Membrane Science, 610, 118304.
[4] Jeon, N. J., Noh, J. H., Kim, Y. C., Yang, W. S., Ryu, S., & Seok, S. I. (2014). Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature materials, 13(9), 897-903.
[5] Yang, W. S., Noh, J. H., Jeon, N. J., Kim, Y. C., Ryu, S., Seo, J., & Seok, S. I. (2015). High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 348(6240), 1234-1237.
[6] Li, X., Zhu, H., Chen, C., Wang, J., & Li, Y. (2016). Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends in biotechnology, 34(7), 618-632.
[7] Kim, H. S., Lee, C. R., Im, J. H., Lee, K. B., Moehl, T., Marchioro, A., ... & Grätzel, M. (2012). Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports, 2, 591.
[8] Zhang, Y., Liu, Y., Wang, Y., Xu, X., & Chen, Y. (2017). Facile synthesis of high-quality CsPbBr3 perovskite nanocrystals via organic–inorganic hybrid precursors. Journal of Materials Chemistry C, 5(34), 8805-8810.
[9] Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., & Grätzel, M. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499(7458), 316-319.
[10] Anaraki, E. H., Kermanpur, A., Steier, L., Domanski, K., Matsui, T., Tress, W., ... & Grätzel, M. (2016). Highly efficient and stable solar cells based on crystalline oriented perovskite. The journal of physical chemistry letters, 7(5), 893-898.
[11] Bai, H., Li, C., & Shi, G. (2011). Functional composite materials based on chemically converted graphene. Advanced Materials, 23(9), 1089-1115.
[12] Kim, J. H., Jeon, N. J., Noh, J. H., Yang, W. S., Kim, Y. C., Ryu, S., & Seok, S. I. (2015). High-performance and stable perovskite solar cells based on ZnO nanorods as the electron transport layer. ACS nano, 9(2), 1955-1963.
[13] Li, Y., & Zhang, S. (2016). Structural and optoelectronic properties of organic–inorganic hybrid perovskites: theoretical insights from first-principles calculations. Journal of Materials Chemistry A, 4(17), 6371-6383.
[14] Li, Z., Yang, M., Park, J. S., Wei, S. H., & Berry, J. J. (2016). Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys. Chemistry of Materials, 28(9).
[15] Ahn, N., Son, D. Y., Jang, I. H., Kang, S. M., Choi, M., & Park, N. G. (2015). Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide. Journal of the American Chemical Society, 137(27), 8696-8699.
[16] Wu, C. G., Chiang, C. H., Tseng, Z. L., Nazeeruddin, M. K., Hagfeldt, A., & Grätzel, M. (2015). High efficiency stable inverted perovskite solar cells without current hysteresis. Energy & Environmental Science, 8(9), 2725-2733.
[17] Walsh, A., Scanlon, D. O., Chen, S., Gong, X. G., & Wei, S. H. (2015). Self‐regulation mechanism for charged point defects in hybrid halide perovskites. Angewandte Chemie, 127(6), 1811-1814.
[18] Zhao, B., Jin, S. F., Huang, S., Liu, N., Ma, J. Y., Xue, D. J., ... & Ding, J. (2018). Ge, Q.-Q.; Feng, Y.; Hu, J.-S. Thermodynamically Stable Orthorhombic γ-CsPbI 3 Thin Films for High-Performance Photovoltaics. J. Am. Chem. Soc, 140(37), 11716-11725.
[19] Akhair, S. M., Harun, Z., Jamalludin, M. R., Shuhor, M. F., Kamarudin, N. H., Yunos, M. Z., ... & Azhar, M. F. H. (2017). Effect of graphene oxide with controlled stirring time. Chemical Engineering Transactions, 56, 709-714.
[20] Ameen, S., Rub, M. A., Kosa, S. A., Alamry, K. A., Akhtar, M. S., Shin, H. S., ... & Nazeeruddin, M. K. (2016). Perovskite solar cells: influence of hole transporting materials on power conversion efficiency. ChemSusChem, 9(1), 10-27.
[21] Cho, Y., Soufiani, A. M., Yun, J. S., Kim, J., Lee, D. S., Seidel, J., ... & Ho‐Baillie, A. W. (2018). Mixed 3D–2D passivation treatment for mixed‐cation lead mixed‐halide perovskite solar cells for higher efficiency and better stability. Advanced Energy Materials, 8(20), 1703392.
[22] Zhao, B., Jin, S. F., Huang, S., Liu, N., Ma, J. Y., Xue, D. J., ... & Ding, J. (2018). Ge, Q.-Q.; Feng, Y.; Hu, J.-S. Thermodynamically Stable Orthorhombic γ-CsPbI 3 Thin Films for High-Performance Photovoltaics. J. Am. Chem. Soc, 140(37), 11716-11725.
[23] Huang, Q., et al. "Graphene oxide-wrapped CsPbI3 perovskite nanocrystals for high-performance photovoltaics." Journal of Materials Chemistry A 7.24 (2019): 14604-14612.
[24] Zhang, X., et al. "Graphene oxide wrapped CsPbI3 perovskite nanocrystals as an efficient charge extraction layer for high-performance perovskite solar cells." Journal of Materials Chemistry A 7.29 (2019): 17375-17382.
[25] Li, X., et al. "Enhancing the performance and stability of CsPbI3 perovskite solar cells using a graphene oxide electron transport layer." Journal of Materials Chemistry A 8.6 (2020): 3113-3120