[1] M. Lewenstein, A. Sanpera, V. Ahu_nger, B. Damski, A. Sen and U. Sen, Adv. Phys. 56 (2007) 243.
[2] I. Bloch, J. Dalibard andW. Zwerger, Rev. Mod. Phys. 80 (2008) 885.
[3] V.O. Nesterenko, A.N. Novikov, E. Suraud, Transport of the Repulsive Bose Einstein Condensate in a Double-Well Trap: Interaction Impact and Relation to the Josephson Effect, Laser Phys. 24 (2014) 125501.
[4] C. Chin, R. Grimm, P. S. Julienne, and E. Tiesinga, Feshbach resonances in ultracold gases, Rev. Mod. Phys. 82 (2010) 1225
[5] G. Zurn, F. Serwane, T. Lompe, A. N. Wenz, M. G. Ries, J. E. Bohn, and S. Jochim, Fermionization of two distinguishable fermions, Phys. Rev. Lett. 108 (2012) 075303.
[6] E. Haller, M. J. Mark, R. Hart, J. G. Danzl, L. Reichsollner, V. Melezhik, P. Schmelcher, H.C. Nagerl, Confinement induced resonances in low dimensional quantum systems, Phys. Rev. Lett. 104 (2010) 153203.
[7] T. Busch, B.G. Englert, K. Rzazewski, and M. Wilkens, Two cold atoms in a harmonic trap, Found. Phys. 28 (1998) 549
[8] M. Olshanii, Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons, Phys. Rev. Lett. 81 (1998) 938.
[9] J.P. Kestner, L.M. Duan, Anharmonicity-induced resonances for ultracold atoms and their detection, New J. Phys. 12 (2010) 053016.
[10] S. Sala, A. Saenz, Theory of inelastic con_nement-induced resonances due to the coupling of center-of-mass and relative motion, Phys. Rev. A 94 (2016) 022713.
[11] S.-G. Peng, H. Hu, X.-J. Liu, P.D. Drummond, Confinement-induced resonances in anharmonic waveguides, Phys. Rev. A 84 (2011) 043619.
[12] C.F.S. Zephania, T. Sil, Study of autonomous conservative oscillator using an improved perturbation method, J. Vib. Eng. Technol. 9 (2021) 409.
[13] Q. Wang, B. Xiong, Anharmonicity-induced criticality of collective excitation in a trapped Bose Einstein condensate, Internat. J. Modern Phys. B 32 (2018) 1850345.
[14] I. S. Ishmukhamedov, D. T. Aznabayev, and S. A. Zhaugasheva, Two Body Atomic System in a One Dimensional Anharmonic Trap: The Energy Spectrum, Physics of Particles and Nuclei Letters, 12(5) (2015) 680-688.
[15] I.S. Ishmukhamedov, Quench dynamics of two interacting atoms in a onedimensional anharmonic trap, Physica E 142 (2022) 115228
[16] L. Budewig, S. I. Mistakidis, and P. Schmelcher, Quench dynamics of two one-dimensional harmonically trapped bosons bridging attraction and repulsion, Molecular Physics 117 (2019) 2043-2057.
[17] M. Rontani, G Eriksson, S Åberg and S M Reimann, On the renormalization of contact interactions for the configuration-interaction method in two-dimensions, J. Phys. B: At. Mol. Opt. Phys. 50 (2017) 065301-065311
[18] M. Olshanii, and L. Pricoupenko, Rigorous Approach to the Problem of Ultraviolet Divergencies in Dilute Bose Gases, Phys. Rev. Lett. , 88 (2002) 010402
[19] S. Campbell, M. A. Garcia-March, T. Fogarty and T. Busch, Quenching small quantum gases: Genesis of the orthogonality catastrophe, Phys. Rev. A 90 (2014) 013617.
[20] T. Plaβmann, S. I. Mistakidis, P. Schmelcher, Quench dynamics of finite bosonic ensembles in optical lattices with spatially modulated interactions, J. of Phys. B: Atomic, molecular and optical physics 51 (2018)225001
[21] M. Ebert, A. Volosniev, H. W. Hammer, Two cold atoms in a time dependent harmonic trap in one dimension, Ann. Phys. 1 (2016)12.