Document Type : Research

Authors

1 - Department of Photonics, Graduate University of Advanced Technology, Kerman - Department of Mathematics, University of Jiroft, Jiroft

2 Department of Photonics, Graduate University of Advanced Technology, Kerman

3 Department of Physics, Faculty of Science, Vali-e-Asr University of Rafsanjan

Abstract

This paper describes the interaction of three two-level atoms with a single-mode quantized field in the intensity-dependent coupling regime. Under a choice for initial conditions for the subsystems, where the atoms are prepared in an excited state and the cavity field is in the standard coherent state, the explicit form of the total system's state vector is obtained. To achieve this goal, the Laplace transform technique is employed. By considering the intensity-dependent and constant coupling regimes, some of the most important physical properties of the system such as quantum entanglement between the atomic and the radiation field subsystem, atomic population inversion, quantum statistics of field photons, and quadrature squeezing are numerically investigated. The numerical results show that the presence of nonlinear function can affect in the depth and the domain of the system's nonclassical behavior. Also, selecting different nonlinearity functions corresponding to any nonlinear oscillator with arbitrary nonlinear function, or corresponding to any solvable quantum system with a known discrete spectrum, the presented formalism would clearly be distinguished.

Keywords

[1] Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information. Cambridge University Press.
[2] Hou, Z., Tang, J. F., Huang, C. J., Huang, Y. F., Xiang, G. Y., Li, C. F., & Guo, G. C. (2023). Entangled-state time multiplexing for multiphoton entanglement generation. Physical Review Applied, 19(1), L011002.
[3] Šupić, I., Skrzypczyk, P., & Cavalcanti, D. (2019). Methods to estimate entanglement in teleportation experiments. Physical Review A, 99(3), 032334.
[4] Guo, Y., Liu, B. H., Li, C. F., & Guo, G. C. (2019). Advances in quantum dense coding. Advanced Quantum Technologies, 2(5-6), 1900011.
[5] Yin, J., Li, Y. H., Liao, S. K., Yang, M., Cao, Y., Zhang, L., ... & Pan, J. W. (2020). Entanglement-based secure quantum cryptography over 1,120 kilometres. Nature, 582(7813), 501-505.
[6] Audretsch, J. (2007). Entangled Systems: New Directions in Quantum Physics. John Wiley & Sons.
[7] Baghshahi, H. R., & Tavassoly, M. K. (2015). Dynamics of different entanglement measures of two three-level atoms interacting nonlinearly with a single-mode field. The European Physical Journal Plus, 130, 1-13.
[8] Lee, N., Benichi, H., Takeno, Y., Takeda, S., Webb, J., Huntington, E., & Furusawa, A. (2011). Teleportation of nonclassical wave packets of light. Science, 332(6027), 330-333.
[9] Sergienko, A. V. (Ed.). (2018). Quantum Communications and Cryptography. CRC Press.
[10] Prabhakar, S., Shields, T., Dada, A. C., Ebrahim, M., Taylor, G. G., Morozov, D., ... & Clerici, M. (2020). Two-photon quantum interference and entanglement at 2.1 μm. Science Advances, 6(13), eaay5195.
[11] Faghihi, M. J., & Tavassoly, M. K. (2013). Number-phase entropic squeezing and nonclassical properties of a three-level atom interacting with a two-mode field: intensity-dependent coupling, deformed Kerr medium, and detuning effects. Journal of the Optical Society of America B, 30(11), 2810-2818.
[12] Ghorbani, M., Faghihi, M. J., & Safari, H. (2017). Wigner function and entanglement dynamics of a two-atom two-mode nonlinear Jaynes–Cummings model. Journal of the Optical Society of America B, 34(9), 1884-1893.
[13] Ghasemian, E., & Tavassoly, M. K. (2018). Atom and field squeezed output of three-level atom laser surrounded by a Kerr medium in the electromagnetically induced transparency regime. Journal of the Optical Society of America B, 35(1), 86-94.
[14] Shore, B. W., & Knight, P. L. (1993). The Jaynes-Cummings model. Journal of Modern Optics, 40(7), 1195-1238.
[15] Ghorbani, M., Safari, H., & Faghihi, M. J. (2016). Controlling the entanglement of a Λ-type atom in a bimodal cavity via atomic motion. Journal of the Optical Society of America B, 33(6), 1022-1029.
[16] Baghshahi, H. R., & Faghihi, M. J. (2022). f-deformed cavity mode coupled to a Λ-type atom in the presence of dissipation and Kerr nonlinearity. Journal of the Optical Society of America B, 39(11), 2925-2933.
[17] Ghasemian, E., & Tavassoly, M. K. (2021). Generation of Werner-like states via a two-qubit system plunged in a thermal reservoir and their application in solving binary classification problems. Scientific Reports, 11(1), 3554.
[18] Nadiki, M. H., Tavassoly, M. K., & Yazdanpanah, N. (2018). A trapped ion in an optomechanical system: entanglement dynamics. The European Physical Journal D, 72, 1-10.
[19] Bruss, D., & Macchiavello, C. (2002). Optimal eavesdropping in cryptography with three-dimensional quantum states. Physical Review Letters, 88(12), 127901.
[20] Clauser, J. F., Horne, M. A., Shimony, A., & Holt, R. A. (1969). Proposed experiment to test local hidden-variable theories. Physical Review Letters, 23(15), 880.
[21] Kafatos, M. (Ed.). (2013). Bell's Theorem, Quantum Theory and Conceptions of the Universe (Vol. 37). Springer Science & Business Media.
[22] Man'ko, V. I., & Tino, G. M. (1995). Experimental limit on the blue shift of the frequency of light implied by a q-nonlinearity. Physics Letters A, 202(1), 24-27.
[23] de Matos Filho, R. L., & Vogel, W. (1996). Nonlinear coherent states. Physical Review A, 54(5), 4560.
[24] Man'ko, V. I., Marmo, G., Sudarshan, E. C. G., & Zaccaria, F. (1997). f-Oscillators and nonlinear coherent states. Physica Scripta, 55(5), 528.
[25] Roknizadeh, R., & Tavassoly, M. K. (2004). The construction of some important classes of generalized coherent states: the nonlinear coherent states method. Journal of Physics A: Mathematical and General, 37(33), 8111.
[26] Faghihi, M. J. (2020). Generalized photon added and subtracted f‐deformed displaced Fock states. Annalen der Physik, 532(12), 2000215.
[27] Roknizadeh, R., & Tavassoly, M. K. (2004). Representations of coherent and squeezed states in a f-deformed Fock space. Journal of Physics A: Mathematical and General, 37(21), 5649.
[28] Faghihi, M. J., & Tavassoly, M. K. (2011). Nonlinear quantum optical springs and their nonclassical properties. Communications in Theoretical Physics, 56(2), 327.
[29] Faghihi, M. J. (2021). Nonclassicality of f-deformed photon-added-then-subtracted SU(1,1) and SU(2) displaced number states. Optik, 227, 165999.
[30] Torkzadeh-Tabrizi, S., Faghihi, M. J., & Honarasa, G. (2023). Phase space nonclassicality and sub-Poissonianity of deformed photon-added nonlinear cat states: algebraic and group theoretical approach. Optics Letters, 48(3), 688-691.
[31] Miry, S. R., Faghihi, M. J., & Mahmoudi, H. (2023). Nonclassicality of entangled Schrödinger cat states associated to generalized displaced Fock states. Physica Scripta.
[32] Honarasa, G. R., Tavassoly, M. K., & Hatami, M. (2012). Quantum phase distribution and the number phase Wigner function of the generalized squeezed vacuum states associated with solvable quantum systems. Chinese Physics B, 21(5), 054208.
[33] Honarasa, G. R., Tavassoly, M. K., & Hatami, M. (2009). Number-phase entropic uncertainty relations and Wigner functions for solvable quantum systems with discrete spectra. Physics Letters A, 373(43), 3931-3936.
[34] Honarasa, G. R., Tavassoly, M. K., & Hatami, M. (2009). Quantum phase properties associated to solvable quantum systems using the nonlinear coherent states approach. Optics Communications, 282(11), 2192-2198.
[35] Kis, Z., Vogel, W., & Davidovich, L. (2001). Nonlinear coherent states of trapped-atom motion. Physical Review A, 64(3), 033401.
[36] Buck, B., & Sukumar, C. V. (1981). Exactly soluble model of atom-phonon coupling showing periodic decay and revival. Physics Letters A, 81(2-3), 132-135.
[37] Fink, J. M., Göppl, M., Baur, M., Bianchetti, R., Leek, P. J., Blais, A., & Wallraff, A. (2008). Climbing the Jaynes–Cummings ladder and observing its nonlinearity in a cavity QED system. Nature, 454(7202), 315-318.
[38] Sudarshan, E. C. G. (1993). Diagonal harmonious state representations. International Journal of Theoretical Physics, 32, 1069-1076.
[39] Eftekhari, F., Tavassoly, M. K., & Behjat, A. (2022). Nonlinear interaction of a three-level atom with a two-mode field in an optomechanical cavity: Field and mechanical mode dissipations. Physica A: Statistical Mechanics and its Applications, 596, 127176.
[40] Faghihi, M. J., Baghshahi, H. R., & Mahmoudi, H. (2023). Nonclassical correlations in lossy cavity optomechanics with intensity-dependent coupling. Physica A: Statistical Mechanics and its Applications, 613, 128523.
[41] Mojaveri, B., & Taghipour, J. (2023). Entanglement protection of two qubits moving in an environment with parity-deformed fields. The European Physical Journal Plus, 138(3), 263.
[42] Amo, A., Lefrère, J., Pigeon, S., Adrados, C., Ciuti, C., Carusotto, I., ... & Bramati, A. (2009). Superfluidity of polaritons in semiconductor microcavities. Nature Physics, 5(11), 805-810.
[43] Brossard, F. S. F., Xu, X. L., Williams, D. A., Hadjipanayi, M., Hugues, M., Hopkinson, M., ... & Taylor, R. A. (2010). Strongly coupled single quantum dot in a photonic crystal waveguide cavity. Applied Physics Letters, 97(11).
[44] Lisenfeld, J., Müller, C., Cole, J. H., Bushev, P., Lukashenko, A., Shnirman, A., & Ustinov, A. V. (2010). Rabi spectroscopy of a qubit-fluctuator system. Physical Review B, 81(10), 100511.
[45] Agarwal, G. S. (2012). Quantum Optics. Cambridge University Press.
[46] Baghshahi, H. R., & Tavassoly, M. K. (2014). Entanglement, quantum statistics and squeezing of two Ξ-type three-level atoms interacting nonlinearly with a single-mode field. Physica Scripta, 89(7), 075101.
[47] Coffman, V., Kundu, J., & Wootters, W. K. (2000). Distributed entanglement. Physical Review A, 61(5), 052306.
[48] Tessier, T. E., Deutsch, I. H., Delgado, A., & Fuentes-Guridi, I. (2003). Entanglement sharing in the two-atom Tavis-Cummings model. Physical Review A, 68(6), 062316.
[49] Scully, M. O., & Zubairy, M. S. (1999). Quantum Optics. Cambridge University Press.
[50] Rezakhaninezhad, M., Baghshahi, H. R., & Faghihi, M. J. (2023). Enhancement of nonclassicality of displaced number states by noiseless linear amplification. Biquarterly Journal of Optoelectronic, 5(2), 81-90.
[51] Ficek, Z., & Wahiddin, M. R. (2014). Quantum Optics for Beginners. CRC Press.
[52] Gerry, C. C., & Knight, P. L. (2005). Introductory Quantum Optics. Cambridge University Press.
[53] Farzan, M. E., Faghihi, M. J., & Honarasa, G. (2021). Nonclassical properties of f-deformed photon-added squeezed Kerr states. Physica A: Statistical Mechanics and its Applications, 565, 125569.