[1] Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information. Cambridge University Press.
[2] Hou, Z., Tang, J. F., Huang, C. J., Huang, Y. F., Xiang, G. Y., Li, C. F., & Guo, G. C. (2023). Entangled-state time multiplexing for multiphoton entanglement generation. Physical Review Applied, 19(1), L011002.
[3] Šupić, I., Skrzypczyk, P., & Cavalcanti, D. (2019). Methods to estimate entanglement in teleportation experiments. Physical Review A, 99(3), 032334.
[4] Guo, Y., Liu, B. H., Li, C. F., & Guo, G. C. (2019). Advances in quantum dense coding. Advanced Quantum Technologies, 2(5-6), 1900011.
[5] Yin, J., Li, Y. H., Liao, S. K., Yang, M., Cao, Y., Zhang, L., ... & Pan, J. W. (2020). Entanglement-based secure quantum cryptography over 1,120 kilometres. Nature, 582(7813), 501-505.
[6] Audretsch, J. (2007). Entangled Systems: New Directions in Quantum Physics. John Wiley & Sons.
[7] Baghshahi, H. R., & Tavassoly, M. K. (2015). Dynamics of different entanglement measures of two three-level atoms interacting nonlinearly with a single-mode field. The European Physical Journal Plus, 130, 1-13.
[8] Lee, N., Benichi, H., Takeno, Y., Takeda, S., Webb, J., Huntington, E., & Furusawa, A. (2011). Teleportation of nonclassical wave packets of light. Science, 332(6027), 330-333.
[9] Sergienko, A. V. (Ed.). (2018). Quantum Communications and Cryptography. CRC Press.
[10] Prabhakar, S., Shields, T., Dada, A. C., Ebrahim, M., Taylor, G. G., Morozov, D., ... & Clerici, M. (2020). Two-photon quantum interference and entanglement at 2.1 μm. Science Advances, 6(13), eaay5195.
[11] Faghihi, M. J., & Tavassoly, M. K. (2013). Number-phase entropic squeezing and nonclassical properties of a three-level atom interacting with a two-mode field: intensity-dependent coupling, deformed Kerr medium, and detuning effects. Journal of the Optical Society of America B, 30(11), 2810-2818.
[12] Ghorbani, M., Faghihi, M. J., & Safari, H. (2017). Wigner function and entanglement dynamics of a two-atom two-mode nonlinear Jaynes–Cummings model. Journal of the Optical Society of America B, 34(9), 1884-1893.
[13] Ghasemian, E., & Tavassoly, M. K. (2018). Atom and field squeezed output of three-level atom laser surrounded by a Kerr medium in the electromagnetically induced transparency regime. Journal of the Optical Society of America B, 35(1), 86-94.
[14] Shore, B. W., & Knight, P. L. (1993). The Jaynes-Cummings model. Journal of Modern Optics, 40(7), 1195-1238.
[15] Ghorbani, M., Safari, H., & Faghihi, M. J. (2016). Controlling the entanglement of a Λ-type atom in a bimodal cavity via atomic motion. Journal of the Optical Society of America B, 33(6), 1022-1029.
[16] Baghshahi, H. R., & Faghihi, M. J. (2022). f-deformed cavity mode coupled to a Λ-type atom in the presence of dissipation and Kerr nonlinearity. Journal of the Optical Society of America B, 39(11), 2925-2933.
[17] Ghasemian, E., & Tavassoly, M. K. (2021). Generation of Werner-like states via a two-qubit system plunged in a thermal reservoir and their application in solving binary classification problems. Scientific Reports, 11(1), 3554.
[18] Nadiki, M. H., Tavassoly, M. K., & Yazdanpanah, N. (2018). A trapped ion in an optomechanical system: entanglement dynamics. The European Physical Journal D, 72, 1-10.
[19] Bruss, D., & Macchiavello, C. (2002). Optimal eavesdropping in cryptography with three-dimensional quantum states. Physical Review Letters, 88(12), 127901.
[20] Clauser, J. F., Horne, M. A., Shimony, A., & Holt, R. A. (1969). Proposed experiment to test local hidden-variable theories. Physical Review Letters, 23(15), 880.
[21] Kafatos, M. (Ed.). (2013). Bell's Theorem, Quantum Theory and Conceptions of the Universe (Vol. 37). Springer Science & Business Media.
[22] Man'ko, V. I., & Tino, G. M. (1995). Experimental limit on the blue shift of the frequency of light implied by a q-nonlinearity. Physics Letters A, 202(1), 24-27.
[23] de Matos Filho, R. L., & Vogel, W. (1996). Nonlinear coherent states. Physical Review A, 54(5), 4560.
[24] Man'ko, V. I., Marmo, G., Sudarshan, E. C. G., & Zaccaria, F. (1997). f-Oscillators and nonlinear coherent states. Physica Scripta, 55(5), 528.
[25] Roknizadeh, R., & Tavassoly, M. K. (2004). The construction of some important classes of generalized coherent states: the nonlinear coherent states method. Journal of Physics A: Mathematical and General, 37(33), 8111.
[26] Faghihi, M. J. (2020). Generalized photon added and subtracted f‐deformed displaced Fock states. Annalen der Physik, 532(12), 2000215.
[27] Roknizadeh, R., & Tavassoly, M. K. (2004). Representations of coherent and squeezed states in a f-deformed Fock space. Journal of Physics A: Mathematical and General, 37(21), 5649.
[28] Faghihi, M. J., & Tavassoly, M. K. (2011). Nonlinear quantum optical springs and their nonclassical properties. Communications in Theoretical Physics, 56(2), 327.
[29] Faghihi, M. J. (2021). Nonclassicality of f-deformed photon-added-then-subtracted SU(1,1) and SU(2) displaced number states. Optik, 227, 165999.
[30] Torkzadeh-Tabrizi, S., Faghihi, M. J., & Honarasa, G. (2023). Phase space nonclassicality and sub-Poissonianity of deformed photon-added nonlinear cat states: algebraic and group theoretical approach. Optics Letters, 48(3), 688-691.
[31] Miry, S. R., Faghihi, M. J., & Mahmoudi, H. (2023). Nonclassicality of entangled Schrödinger cat states associated to generalized displaced Fock states. Physica Scripta.
[32] Honarasa, G. R., Tavassoly, M. K., & Hatami, M. (2012). Quantum phase distribution and the number phase Wigner function of the generalized squeezed vacuum states associated with solvable quantum systems. Chinese Physics B, 21(5), 054208.
[33] Honarasa, G. R., Tavassoly, M. K., & Hatami, M. (2009). Number-phase entropic uncertainty relations and Wigner functions for solvable quantum systems with discrete spectra. Physics Letters A, 373(43), 3931-3936.
[34] Honarasa, G. R., Tavassoly, M. K., & Hatami, M. (2009). Quantum phase properties associated to solvable quantum systems using the nonlinear coherent states approach. Optics Communications, 282(11), 2192-2198.
[35] Kis, Z., Vogel, W., & Davidovich, L. (2001). Nonlinear coherent states of trapped-atom motion. Physical Review A, 64(3), 033401.
[36] Buck, B., & Sukumar, C. V. (1981). Exactly soluble model of atom-phonon coupling showing periodic decay and revival. Physics Letters A, 81(2-3), 132-135.
[37] Fink, J. M., Göppl, M., Baur, M., Bianchetti, R., Leek, P. J., Blais, A., & Wallraff, A. (2008). Climbing the Jaynes–Cummings ladder and observing its nonlinearity in a cavity QED system. Nature, 454(7202), 315-318.
[38] Sudarshan, E. C. G. (1993). Diagonal harmonious state representations. International Journal of Theoretical Physics, 32, 1069-1076.
[39] Eftekhari, F., Tavassoly, M. K., & Behjat, A. (2022). Nonlinear interaction of a three-level atom with a two-mode field in an optomechanical cavity: Field and mechanical mode dissipations. Physica A: Statistical Mechanics and its Applications, 596, 127176.
[40] Faghihi, M. J., Baghshahi, H. R., & Mahmoudi, H. (2023). Nonclassical correlations in lossy cavity optomechanics with intensity-dependent coupling. Physica A: Statistical Mechanics and its Applications, 613, 128523.
[41] Mojaveri, B., & Taghipour, J. (2023). Entanglement protection of two qubits moving in an environment with parity-deformed fields. The European Physical Journal Plus, 138(3), 263.
[42] Amo, A., Lefrère, J., Pigeon, S., Adrados, C., Ciuti, C., Carusotto, I., ... & Bramati, A. (2009). Superfluidity of polaritons in semiconductor microcavities. Nature Physics, 5(11), 805-810.
[43] Brossard, F. S. F., Xu, X. L., Williams, D. A., Hadjipanayi, M., Hugues, M., Hopkinson, M., ... & Taylor, R. A. (2010). Strongly coupled single quantum dot in a photonic crystal waveguide cavity. Applied Physics Letters, 97(11).
[44] Lisenfeld, J., Müller, C., Cole, J. H., Bushev, P., Lukashenko, A., Shnirman, A., & Ustinov, A. V. (2010). Rabi spectroscopy of a qubit-fluctuator system. Physical Review B, 81(10), 100511.
[45] Agarwal, G. S. (2012). Quantum Optics. Cambridge University Press.
[46] Baghshahi, H. R., & Tavassoly, M. K. (2014). Entanglement, quantum statistics and squeezing of two Ξ-type three-level atoms interacting nonlinearly with a single-mode field. Physica Scripta, 89(7), 075101.
[47] Coffman, V., Kundu, J., & Wootters, W. K. (2000). Distributed entanglement. Physical Review A, 61(5), 052306.
[48] Tessier, T. E., Deutsch, I. H., Delgado, A., & Fuentes-Guridi, I. (2003). Entanglement sharing in the two-atom Tavis-Cummings model. Physical Review A, 68(6), 062316.
[49] Scully, M. O., & Zubairy, M. S. (1999). Quantum Optics. Cambridge University Press.
[50] Rezakhaninezhad, M., Baghshahi, H. R., & Faghihi, M. J. (2023). Enhancement of nonclassicality of displaced number states by noiseless linear amplification. Biquarterly Journal of Optoelectronic, 5(2), 81-90.
[51] Ficek, Z., & Wahiddin, M. R. (2014). Quantum Optics for Beginners. CRC Press.
[52] Gerry, C. C., & Knight, P. L. (2005). Introductory Quantum Optics. Cambridge University Press.
[53] Farzan, M. E., Faghihi, M. J., & Honarasa, G. (2021). Nonclassical properties of f-deformed photon-added squeezed Kerr states. Physica A: Statistical Mechanics and its Applications, 565, 125569.