[1] K. S. Novoselov, A. K. Geim, S.Morzov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science 306, (2004) 666-669.
[2] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Rouff, Graphene-based composite materials, Nature 442, (2006). 282-286.
[3] F. Schedin, A. K. Geim, S. V. Moeozov, E. W. Hill, P. Blake, M. I. Katsnelson, K. S. Novoselov, Detection of individual gas molecules adsorbed on grapheme, Nat. Mater. 6, (2007) 652-655.
[4] I. I. Barbolina, K. S. Novoselov, S. V. Morozov, S. V. Dubonos, M. Missous, A. O. Volkov, D. A. Chiristian, I. V. Grigorieva, A. K. Geim, Submicron sensors of local electric field with single-electron resolution at room temperature, Appl. Phys. Lett. 88,(2006) 013901.
[5] C. A. Di, D. Wei, G. Yu, Y. Liu, Y. Guo, D. Zho, Patterned graphene as source/drain electrodes for bottom‐contact organic field‐effect transistors, Advanced Mater. 20, (2008) 3289.
[6] M. Goudarzi, S. S. Parhizgar, J. Beheshtian, Ab Initio Study of Mono-Layer Graphene as an Electronical or Optical Sensor for Detecting B, N, O and F Atoms, Journal of ELECTRONIC MATERIALS, Volume 48 Issue 7 (2019) 4265-4272.
[7] M. Goudarzi, S. S. Parhizgar, J. Beheshtian, Electronic and optical properties of vacancy and B, N, O and F doped graphene: DFT study ,Opto-Electronics Review 27 (2019) 130–136.
[8] K.S. Novoselov, V.I. Fal'ko, L. Colombo, P.R .Gellert, M.G. Schwab, K. Kim, A roadmap for graphene, Nature 490 (2012) 192–200.
[9] C. Sealy, Graphene takes soft approach to energy storage, Nano Energy2 (2013) 1391–1395.
[10] Y. Peng, J. Zhong, K. Wang, B. F. Xue, Y.B. Cheng, A printable graphene enhanced composite counter electrode for flexible dye-sensitized solar cells, Nano Energy 2 (2013) 235–240.
[11] X. Zhong, L. Liu, X. D. Wang, H. Y. Yu, G. L .Zhuang, D. H. Mei, X.N. Li, J. G. Wang, A radar-like iron based nanohybrid as an efficient and stable electrocatalyst for oxygen reduction, J. Mater. Chem. A2 (2014) 6703–6707.
[12] C. Cao, M. Wu, J. Jiang, and H.-P. Cheng, Transition metal adatom and dimer adsorbed on graphene, Phys. Rev. B 81, 205424 (2010).
[13] H. Valencia, A. Gil, and G. Frapper, Trends in the Adsorption of 3d Transition Metal Atoms onto Graphene and Nanotube Surfaces: A DFT Study and Molecular Orbital Analysis, J. Phys. Chem. C 114, (2010) 14141-14153.
[14] D. H. Lim, A. S. Negreira, and J. Wilcox, , DFT Studies on the Interaction of Defective Graphene-Supported Fe and Al Nanoparticles J. Phys. Chem. C 115,. (2011) 8961-8970.
[15] T. O. Wehling, A. I. Lichtenstein, and M. I. Katsnelson, Transition-metal adatoms on graphene: Influence of local Coulomb interactions on chemical bonding and magnetic moments, Phys. Rev. B 84, (2011) 23511.
[16] R. C. Longo, J. Carrete, J. Ferrer, and L. J. Gallego, Structural, magnetic, and electronic properties of Nin and Fen nanostructures (n=1–4) adsorbed on zigzag graphene nanoribbons, Phys. Rev. B 81, 115418 (2010).
[17] H. Johll, H. C. Kang, and E. S. Tok, Density functional theory study of Fe, Co, and Ni adatoms and dimers adsorbed on graphene, Phys. Rev. B 79, (2009) 245416.
[18] H. Johll, J. Wu, S. W. Ong, H. C. Kang, and E. S. Tok, Graphene-adsorbed Fe, Co, and Ni trimers and tetramers: Structure, stability, and magnetic moment, Phys. Rev. B 83, (2011). 205408.
[19] A. Quandt, C. Ozdogan, J. Kunstmann and H. Fehske, Functionalizing graphene by embedded boron clusters, Nanotechnology 19 (2008) 335707.
[20] X. QiDai, Y. Tang, J. Zhao and Y. Dai, Absorption of Pt clusters and the induced magnetic properties of graphen, J. Phys. Condens. Matter 22 (2010) 316005.
[21] Q. Sun, M. Sakurai, Q. Wang, J.Z. Yu, G.H. Wang, K. Sumiyama, Y. Kawazoe, Geometry and electronic structures of magic transition-metal oxide clusters M9O6 (M=Fe, Co, and Ni), Phys. Rev. B 62 (2000) 8500.
[22] M. Sakurai, K.Watanabe, K. Sumiyama, K. Suzuki, Magic numbers in transition metal (Fe, Ti, Zr, Nb, and Ta) clusters observed by time-of-flight mass spectrometry, J. Chem. Phys. 111 (1999) 235.
[23] D.N. Shin, Y. Matsuda, E.R. Bernstein, On the iron oxide neutral cluster distribution in the gas phase. I. Detection through 193 nm multiphoton ionization, J. Chem. Phys. 120 (2004) 4150.
[24] D.N. Shin, Y. Matsuda, E.R. Bernstein, On the iron oxide neutral cluster distribution in the gas phase. II. Detection through 118 nm single photon ionization, J. Chem. Phys. 120 (2004) 41574164-.
[25] N.M. Reilly, J.U. Reveles, G.E. Johnson, S.N. Khanna, A.W. Castleman, Influence of charge state on the reaction of FeO3 +/- with carbon monoxide, Chem. Phys. Lett. 435 (2007) 295-300.
[26] N.M. Reilly, J.U. Reveles, G.E. Johnson, S.N. Khanna, A.W. Castleman, Experimental and Theoretical Study of the Structure and Reactivity of Fe1-2O≤6- Clusters with CO, J. Phys. Chem. A 111 (2007) 4158-4166.
[27] N.M. Reilly, J.U. Reveles, G.E. Johnson, J.M. del Campo, S.N. Khanna, A.W. Castleman, Experimental and Theoretical study of the Structure and Reactivity of FemOn+ (m=1, 2; n=1-5) with CO., J. Phys. Chem. C 111 (2007) 19086.
[28] K.S. Molek, C. Anfuso-Cleary, M.A. Duncan, Photodissociation of iron oxide cluster cations, J. Phys. Chem. A 112 (2008) 9238.9247-
[29] J. P. Cheng, Q. L. Shou, J. S. Wu, F. Liu, V. P. Dravid, X. B. Zhang, Influence of component content on the capacitance of magnetite/reduced graphene oxide composite, J. Electroanal.Chem.698 (2013) 1–8.
[30] Q. T. Qu, S. B. Yang, X. L. Feng, 2D Sandwich-like Sheets of Iron Oxide Grown on Graphene as High Energy Anode Material for Supercapacitors, Adv.Mater.23 (2011) 5574–5580.
[31] W. H. Shi, J. X. Zhu, D. H. Sim, Y. Y. Tay, Z. Y. Lu, X. J. Zhang, Y. Sharma, M. Srinivasan, H.Zhang, H. H. Hng, Q. Y. Yan, Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites, J. Mater.Chem.21(2011)3422–3427.
[32] D. W. Wang, Y .Q. Li, Q. H. Wang, T. M. Wang, Nanostructured Fe2O3–graphene composite as a novel electrode material for supercapacitors, J. SolidState Electrochem.16 (2011) 2095–2102.
[33] Z. Wang, C. Y .Ma, H. L. Wang, Z. H. Liu, Z. H. Hao, Facilely synthesized Fe2O3–graphene nanocomposite as novel electrode materials for supercapacitors with high performance, J. Alloys Compd. 552 (2013) 486–491.
[34] K. K. Lee, S. Deng, H. M. Fan, S. Mhaisalkar, H. R. Tan, E. S. Tok, K .P. Loh, W. S. Chin, C. H. Sow, α-Fe 2 O 3 nanotubes-reduced graphene oxide composites as synergistic electrochemical capacitor materials, Nanoscale 4 (2012) 2958–2961.
[35] Q. H. Wang, L. F. Jiao, H. M. Du, Y. J. Wang, H. T. Yuan, Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors, J. Power Sources 245 (2014) 101–106.
[36] D. Perco, F. Loi, L. Bignardi, L. Sbuelz, P. Lacoving, E. Tosi, S. Lizzit, A. Kartouzian, U. Heiz, A. Baraldi, The highest oxidation state observed in graphene-supported sub-nanometer iron oxide clusters, Commun Chem 6 (61) (2023).
[37] R. Muhammad, Y. Shuai, A. Irfan, T. Ping, First-principles investigations of manganese oxide (MnOx) complex-sandwiched bilayer graphene systems, RSC Adv. 8 (2018) 23688–23697.
[38] A. V. Rozhkov, A. O. Sboychskov, A. L. Rakhmanov, F. Nori, Electronic properties of graphene-based bilayer systems, Physics Reports 648 (2016) 1–104.
[39] S. Alaei, Structural, Electronic And Magnetic Properties Of Various Nanosystems: Molecular Dynamics Simulations And Density Functional Theory Calculations, Ph.D Thesis, (2014).
[40] R. H. Aguilera-del-Toro, F. Aguilera-Granja, M. B. Torres, A. Vega, Relation between structural patterns and magnetism in small iron oxide clusters:reentrance of the magnetic moment at high oxidation ratios, Phys. Chem. Chem. Phys 23(1) (2020).246-272.
[41] D. N. Shin, Y. Matsuda and E. R. Bernstein, On the iron oxide neutral cluster distribution in the gas phase. I. Detection through 193 nm multiphoton ionization, J. Chem. Phys., 2004, 120,4150–4156.
[42] D. N. Shin, Y. Matsuda and E. R. Bernstein, On the iron oxide neutral cluster distribution in the gas phase. II. Detection through 118 nm single photon ionization ,J. Chem. Phys., 2004, 120,4157–4164.
[43] M. S. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P.J. Hasnip, S. J. Clark, M. C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys. Condens. Matter. 14 (11), (2002) 2717.
[44] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, J. D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Rev. Modern Phys. 64 (4), (1992) 1045.
[45] B. Leng, Simulation Of Electronic And Optical Properties Of Graphene, Ph.D Thesis, (2015).
[46] W. Kohn, L. J. Shem, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 A, (1965) 1133.
[47] F. Kadi, E. Malic, Optical properties of Bernal-stacked bilayer graphene: A theoretical study, Phys Rev B 89, (2014) 045419- 045425.
[48] J. G. McHugh, P, Mouratidis, K. Jolley, Stacking-mediated diffusion of ruthenium nanoclusters in bilayer graphene and graphite, Applied Surface Science 607 (2023) 154912-154921.
[49] H. Sadeghi, D. T. H. Lai, J. M. Redoute, A. Zayegh1, Classic and Quantum Capacitances in Bernal Bilayer and Trilayer Graphene Field Effect Transistor, Journal of Nanomaterials (2013), 127690-127697.
[50] H. Santos, A. Ayuela, L. Chico, E. Artacho, van der Waals interaction in magnetic bilayer graphene nanoribbons, Phys Rev B 85 (2012) 245430-245436.
[51] J. Charlier, J.P. Michenaud, X. Gonze, First-principles study of the electronic properties of simple hexagonal graphite, Phys. Rev. B 46 (1992) 4531.
[52] S. Latil, L. Henrard, Charge Carriers in Few-Layer Graphene Films, Phys. Rev. Lett. 97 (2006) 036803.
[53] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. L 77 (1996) 3865-3868.
[54] M. Goudarzi, S. S. Parhizgar, J. Beheshtian, Electronic and optical properties of vacancy and B, N, O and F doped graphene:DFT study, Opto-Electronics Review 27, (2019) 130–136.
[55] M. Goudarzi, S. S. Parhizgar, J. Beheshtian, Ab initio study of mono-layer graphene 1 as an electronical or optical sensor for detecting B, N, O and F atoms, Journal of Electronic Materials 48, (2019) 4265–4272.
[56] L. Peters, E. Sasıoglu, S. Rossen, C. Friedrich, S. Blugel, M. I. Katsnelson, Nonconventional screening of the Coulomb interaction in FexOy clusters: An ab-initio study, Phys. Rev. B 95, (2017) 155119-155127.