Document Type : Research

Authors

1 faculty member of physics in azad university branch of borujerd

2 Plasma Physics Center, Sience and Research Branch, Islamic Azad University, Tehran, Iran

3 Institute for Advanced Technologies, Shahid Rajaee Teacher Training University, 16875-163, Lavizan, Tehran, Iran.

Abstract

In this article, the structural and electronic properties of Iron oxide clusters Fe2O3, Fe3O4, Fe4O6 and Fe6O9 ( which are among the most stable iron oxide clusters) and by placing these clusters between two layers of graphene and optimizing the resulting structure, change this properties in bilayer graphene have been investigated computationally using density functional theory (DFT) have been investigated. The findings indicate that upon the placement of these clusters between two layers of graphene, graphene layers and clusters, initially neutral, become electrically charged, and their charges are equal but opposite sign. Also by placing the clusters between the two graphene layers, the resulting structures are magnetic, and total spin is equal to the cluster spin between the two graphene layers. By placing Fe2O3, Fe3O4 and Fe4O6 clusters between two graphene layers, a chemical bond forms between these clusters and graphene layers, whereas the adsorption of the Fe6O9 cluster between two graphene layers is a physical adsorption.
Keywords: Density Functional Theory, Bilayer Graphene, Iron Oxide clusters, Structural and Optical properties

Keywords

[1] K. S. Novoselov, A. K. Geim, S.Morzov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science 306, (2004) 666-669.

[2] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Rouff, Graphene-based composite materials, Nature 442, (2006). 282-286.

[3] F. Schedin, A. K. Geim, S. V. Moeozov, E. W. Hill, P. Blake, M. I. Katsnelson, K. S. Novoselov, Detection of individual gas molecules adsorbed on grapheme, Nat. Mater. 6, (2007) 652-655.

[4] I. I. Barbolina, K. S. Novoselov, S. V. Morozov, S. V. Dubonos, M. Missous, A. O. Volkov, D. A. Chiristian, I. V. Grigorieva, A. K. Geim, Submicron sensors of local electric field with single-electron resolution at room temperature, Appl. Phys. Lett. 88,(2006) 013901.

[5] C. A. Di, D. Wei, G. Yu, Y. Liu, Y. Guo, D. Zho, Patterned graphene as source/drain electrodes for bottom‐contact organic field‐effect transistors, Advanced Mater. 20, (2008) 3289.

[6] M. Goudarzi, S. S. Parhizgar, J. Beheshtian, Ab Initio Study of Mono-Layer Graphene as an Electronical or Optical Sensor for Detecting B, N, O and F Atoms, Journal of ELECTRONIC MATERIALS, Volume 48 Issue 7 (2019) 4265-4272.

[7] M. Goudarzi, S. S. Parhizgar, J. Beheshtian, Electronic and optical properties of vacancy and B, N, O and F doped graphene: DFT study ,Opto-Electronics Review 27 (2019) 130–136.

[8] K.S. Novoselov, V.I. Fal'ko, L. Colombo, P.R .Gellert, M.G. Schwab, K. Kim, A roadmap for graphene, Nature 490 (2012) 192–200.

[9] C. Sealy, Graphene takes soft approach to energy storage, Nano Energy2 (2013) 1391–1395.

[10] Y. Peng, J. Zhong, K. Wang, B. F. Xue, Y.B. Cheng, A printable graphene enhanced composite counter electrode for flexible dye-sensitized solar cells, Nano Energy 2 (2013) 235–240.

[11] X. Zhong, L. Liu, X. D. Wang, H. Y. Yu, G. L .Zhuang, D. H. Mei, X.N. Li, J. G. Wang, A radar-like iron based nanohybrid as an efficient and stable electrocatalyst for oxygen reduction, J. Mater. Chem. A2 (2014) 6703–6707.

[12] C. Cao, M. Wu, J. Jiang, and H.-P. Cheng, Transition metal adatom and dimer adsorbed on graphene, Phys. Rev. B 81, 205424 (2010).

[13] H. Valencia, A. Gil, and G. Frapper, Trends in the Adsorption of 3d Transition Metal Atoms onto Graphene and Nanotube Surfaces: A DFT Study and Molecular Orbital Analysis, J. Phys. Chem. C 114, (2010) 14141-14153.

[14] D. H. Lim, A. S. Negreira, and J. Wilcox, , DFT Studies on the Interaction of Defective Graphene-Supported Fe and Al Nanoparticles J. Phys. Chem. C 115,. (2011) 8961-8970.

[15] T. O. Wehling, A. I. Lichtenstein, and M. I. Katsnelson, Transition-metal adatoms on graphene: Influence of local Coulomb interactions on chemical bonding and magnetic moments, Phys. Rev. B 84, (2011) 23511.

[16] R. C. Longo, J. Carrete, J. Ferrer, and L. J. Gallego, Structural, magnetic, and electronic properties of Nin and Fen nanostructures (n=1–4) adsorbed on zigzag graphene nanoribbons, Phys. Rev. B 81, 115418  (2010).

[17] H. Johll, H. C. Kang, and E. S. Tok, Density functional theory study of Fe, Co, and Ni adatoms and dimers adsorbed on graphene, Phys. Rev. B 79, (2009) 245416.

[18] H. Johll, J. Wu, S. W. Ong, H. C. Kang, and E. S. Tok, Graphene-adsorbed Fe, Co, and Ni trimers and tetramers: Structure, stability, and magnetic moment, Phys. Rev. B 83, (2011). 205408.

[19] A. Quandt, C. Ozdogan, J. Kunstmann and H. Fehske, Functionalizing graphene by embedded boron clusters, Nanotechnology 19 (2008) 335707.

[20] X. QiDai, Y. Tang, J. Zhao and Y. Dai, Absorption of Pt clusters and the induced magnetic properties of graphen, J. Phys. Condens. Matter 22 (2010) 316005.

[21] Q. Sun, M. Sakurai, Q. Wang, J.Z. Yu, G.H. Wang, K. Sumiyama, Y. Kawazoe, Geometry and electronic structures of magic transition-metal oxide clusters M9O6 (M=Fe, Co, and Ni), Phys. Rev. B 62 (2000) 8500.

[22] M. Sakurai, K.Watanabe, K. Sumiyama, K. Suzuki, Magic numbers in transition metal (Fe, Ti, Zr, Nb, and Ta) clusters observed by time-of-flight mass spectrometry, J. Chem. Phys. 111 (1999) 235.

[23] D.N. Shin, Y. Matsuda, E.R. Bernstein, On the iron oxide neutral cluster distribution in the gas phase. I. Detection through 193 nm multiphoton ionization, J. Chem. Phys. 120 (2004) 4150.

[24] D.N. Shin, Y. Matsuda, E.R. Bernstein, On the iron oxide neutral cluster distribution in the gas phase. II. Detection through 118 nm single photon ionization, J. Chem. Phys. 120 (2004) 41574164-.

[25] N.M. Reilly, J.U. Reveles, G.E. Johnson, S.N. Khanna, A.W. Castleman, Influence of charge state on the reaction of FeO3 +/- with carbon monoxide, Chem. Phys. Lett. 435 (2007) 295-300.

[26] N.M. Reilly, J.U. Reveles, G.E. Johnson, S.N. Khanna, A.W. Castleman, Experimental and Theoretical Study of the Structure and Reactivity of Fe1-2O≤6- Clusters with CO, J. Phys. Chem. A 111 (2007) 4158-4166.

[27] N.M. Reilly, J.U. Reveles, G.E. Johnson, J.M. del Campo, S.N. Khanna, A.W. Castleman, Experimental and Theoretical study of the Structure and Reactivity of FemOn+ (m=1, 2; n=1-5) with CO., J. Phys. Chem. C 111 (2007) 19086.

[28] K.S. Molek, C. Anfuso-Cleary, M.A. Duncan, Photodissociation of iron oxide cluster cations, J. Phys. Chem. A 112 (2008) 9238.9247-

[29] J. P. Cheng, Q. L. Shou, J. S. Wu, F. Liu, V. P. Dravid, X. B. Zhang, Influence of component content on the capacitance of magnetite/reduced graphene oxide composite, J. Electroanal.Chem.698 (2013) 1–8.

[30] Q. T. Qu, S. B. Yang, X. L. Feng, 2D Sandwich-like Sheets of Iron Oxide Grown on Graphene as High Energy Anode Material for Supercapacitors, Adv.Mater.23 (2011) 5574–5580.

[31] W. H. Shi, J. X. Zhu, D. H. Sim, Y. Y. Tay, Z. Y. Lu, X. J. Zhang, Y. Sharma, M. Srinivasan, H.Zhang, H. H. Hng, Q. Y. Yan, Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites, J. Mater.Chem.21(2011)3422–3427.

[32] D. W. Wang, Y .Q. Li, Q. H. Wang, T. M. Wang, Nanostructured Fe2O3–graphene composite as a novel electrode material for supercapacitors, J. SolidState Electrochem.16 (2011) 2095–2102.

[33] Z. Wang, C. Y .Ma, H. L. Wang, Z. H. Liu, Z. H. Hao, Facilely synthesized Fe2O3–graphene nanocomposite as novel electrode materials for supercapacitors with high performance, J. Alloys Compd. 552 (2013) 486–491.

[34] K. K. Lee, S. Deng, H. M. Fan, S. Mhaisalkar, H. R. Tan, E. S. Tok, K .P. Loh, W. S. Chin, C. H. Sow, α-Fe 2 O 3 nanotubes-reduced graphene oxide composites as synergistic electrochemical capacitor materials, Nanoscale 4 (2012) 2958–2961.

[35] Q. H. Wang, L. F. Jiao, H. M. Du, Y. J. Wang, H. T. Yuan, Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors, J. Power Sources 245 (2014) 101–106.

[36] D. Perco, F. Loi, L. Bignardi, L. Sbuelz, P. Lacoving, E. Tosi, S. Lizzit, A. Kartouzian, U. Heiz, A. Baraldi, The highest oxidation state observed in graphene-supported sub-nanometer iron oxide clusters, Commun Chem 6 (61) (2023).
[37] R. Muhammad, Y. Shuai, A. Irfan, T. Ping, First-principles investigations of manganese oxide (MnOx) complex-sandwiched bilayer graphene systems, RSC Adv. 8 (2018) 23688–23697.
[38] A. V. Rozhkov, A. O. Sboychskov, A. L. Rakhmanov, F. Nori, Electronic properties of graphene-based bilayer systems, Physics Reports 648 (2016) 1–104.
[39] S. Alaei, Structural, Electronic And Magnetic Properties Of Various Nanosystems: Molecular Dynamics Simulations And Density Functional Theory Calculations, Ph.D Thesis, (2014).
[40] R. H. Aguilera-del-Toro, F. Aguilera-Granja, M. B. Torres, A. Vega, Relation between structural patterns and magnetism in small iron oxide clusters:reentrance of the magnetic moment at high oxidation ratios, Phys. Chem. Chem. Phys 23(1) (2020).246-272.

[41] D. N. Shin, Y. Matsuda and E. R. Bernstein, On the iron oxide neutral cluster distribution in the gas phase. I. Detection through 193 nm multiphoton ionization, J. Chem. Phys., 2004, 120,4150–4156.

[42] D. N. Shin, Y. Matsuda and E. R. Bernstein, On the iron oxide neutral cluster distribution in the gas phase. II. Detection through 118 nm single photon ionization ,J. Chem. Phys., 2004, 120,4157–4164.

[43] M. S. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P.J. Hasnip, S. J. Clark, M. C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys. Condens. Matter. 14 (11), (2002) 2717.

[44] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, J. D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Rev. Modern Phys. 64 (4), (1992) 1045.

[45] B. Leng, Simulation Of Electronic And Optical Properties Of Graphene, Ph.D Thesis, (2015).

[46] W. Kohn, L. J. Shem, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 A, (1965) 1133.

[47] F. Kadi, E. Malic, Optical properties of Bernal-stacked bilayer graphene: A theoretical study, Phys Rev B 89, (2014) 045419- 045425.
[48] J. G. McHugh, P, Mouratidis, K. Jolley, Stacking-mediated diffusion of ruthenium nanoclusters in bilayer graphene and graphite, Applied Surface Science 607 (2023) 154912-154921.
[49] H. Sadeghi, D. T. H. Lai, J. M. Redoute, A. Zayegh1, Classic and Quantum Capacitances in Bernal Bilayer and Trilayer Graphene Field Effect Transistor, Journal of Nanomaterials (2013), 127690-127697.
[50] H. Santos, A. Ayuela, L. Chico, E. Artacho, van der Waals interaction in magnetic bilayer graphene nanoribbons, Phys Rev B 85 (2012) 245430-245436.

[51] J. Charlier, J.P. Michenaud, X. Gonze, First-principles study of the electronic properties of simple hexagonal graphite, Phys. Rev. B 46  (1992) 4531.

[52] S. Latil, L. Henrard, Charge Carriers in Few-Layer Graphene Films, Phys. Rev. Lett. 97 (2006) 036803.

[53] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. L 77 (1996) 3865-3868.

[54] M. Goudarzi, S. S. Parhizgar, J. Beheshtian, Electronic and optical properties of vacancy and B, N, O and F doped graphene:DFT study, Opto-Electronics Review 27, (2019) 130–136.
[55] M. Goudarzi, S. S. Parhizgar, J. Beheshtian, Ab initio study of mono-layer graphene 1 as an electronical or optical sensor for detecting B, N, O and F atoms, Journal of Electronic Materials 48, (2019) 4265–4272.
[56] L. Peters, E. Sasıoglu, S. Rossen, C. Friedrich, S. Blugel, M. I. Katsnelson, Nonconventional screening of the Coulomb interaction in FexOy clusters: An ab-initio study, Phys. Rev. B 95, (2017) 155119-155127.