Document Type : Research

Authors

1 Department of Physics، Faculty of Science، Azarbaijan Shahid Madani University، Tabriz, Iran

2 Department of Physics، Faculty of Science,، Azarbaijan Shahid Madani University، Tabriz, Iran

Abstract

The transmission spectrum and faraday rotation of a magnetophotonic crystal structure with symmetric arrangment of (AB)m InAs (BA)m are investigated using the 4×4 transfer matrix method. A, B layers are the common dielectric materials and InAs anisotropic semiconductor acts as the defect layer. In the photonic band gap of the structure, two defect mode are appeared with faraday rotation in the same frequency region of the defect modes. In this paper, it is shown that by changing structural parameters, number of periodicity and defect layer thickness, it is possible to design a structure to enhance the faraday rotation with a relavity high transmission. The effect of the external parameters, magnetic field intensity and incident angle, on enhancing the faraday rotation and transmission are studied and optimized. The highest faraday rotation with relatively high transmission achieved in this work occur in 20o incident angle is -44.23o . The results show that frequency location of the defect modes in the transmission spectrum and faraday rotation depend on incident field direction and the defect layer thickness but are independent of the changes of the magnetic field and the number of the structure period.

Keywords

  • Wang, Y. Zhang, X. Guo, T. Chen, H. Liang, X. Hao, X. Hou, W. Kou, Y. Zhao, T. Zhou, S. Liang, Z. Yang, A review of THz modulators with dynamic tunable metasurfaces. Nanomaterials 9, 7. 2019, 965-998
  • Tamagnone, C. Moldovan, J. M Poumirol, A. B. Kuzmenko, A. M. Ionescu, J. R. Mosig, J. P. Carrier, Near optimal graphene terahertz non-reciprocal isolator. Nature communications 7, 11216. 2016, 1-6.
  • W. Day, D. N. Payne, A. J. Barlow, J. J. Ramskov-Hansen, Faraday rotation in coiled, monomode optical fibers: isolators, filters, and magnetic sensors. Optic letters 7, 5. 1982, 238-240.
  • Shi, X. F. Zang, Y. Q. Wang, L. Chen, B. Cai, Y. M. Zhu, A polarization-independent broadband terahertz absorber, Appl. Phys. Lett 105, 031104. 2014, 1-5.
  • Fan, S.-T. Xu, X.-H. Wang, S.-J. Chang, Terahertz polarization converter and one-way transmission based on double-layer magneto-plasmonics of magnetized InSb, Opt. Express 24, 23. 2016, 26431-26443.
  • Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama,M. Tonouchi, R. H. Hauge, J. Kono, Carbon nanotube terahertz polarizer, Nano Lett 9. 2009, 2610-2613.
  • D. Dubois, V. Gilinsky and M. G. Kivelson, Propagation of electromagnetic waves in plasmas, Phys. Rev 129, 6. 1963, 2376-397.
  • Crassee, J. Levallois, A.L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. Van Der Marel, A. B. Kuzmenko, Giant faraday rotation in single-and multilayer graphene. Nat. Phys. 7, 1. 2011, 48-51.
  • Ferreira, J. Viana-Gomes, Y.V. Bludov, V. Pereira, N. M. R. Peres, A. H. Castro Neto, Faraday effect in graphene enclosed in an optical cavity and the equation of motion method for the study of magneto-optical transport in solids. Phys. Rev. B 84, 235410. 2011, 1-25.
  • Gorbar, V. Gusynin, A. Kuzmenko, S. Sharapov, Magneto-optical and optical probes of gapped ground states of bilayer graphene. Phys. Rev. B 86, 075414. 2012,.
  • Martinez, M. B. A.Jalil, S. G. Tan, Giant faraday and kerr rotation with strained graphene. Opt. Lett. 37, 15. 2012, 3237–3239.
  • Shimano, Y. Ino, Y.P. Svirko, M. Kuwata-Gonokami, Terahertz frequency Hall measurement by magneto-optical Kerr spectroscopy in InAs. Appl. Phys. Lett. 81, 2. 2002, 199–201.
  • Han, Z. Zhu, Y. Liao, Z. Wang, L. Yu, W. Zhang, L. Sun, T. Wang, The magneto-optical Kerr effect of InSb in Terahertz region. Phys. Lett. A. 315, 5. 2003, 395–398.
  • M. Faraday, Diary entry on first observation of rotation of plane of polarization.. 1845, Faradays Diary, G. Bell & Son, Ltd., London, 1932.
  • Pourali and H. Bahador, Tunable magneto- optical responses in a photonic crystal containing two plasma defect layers. Physics of Plasma. 26 013515. 2019, 1-8.
  • Pourali, K. Alexander, V. Hessel and E. V. Rebrov, Tunable enhanced faraday rotation in a defected plasma photonic crystal under external magnetic field with different declinations. J. Phys. D: Appl. Phys. 54 50. 2021, 1-9.
  • Roumi, R. Abdi- Ghaleh, tunable faraday rotation of light frome symmetric and asymmetric photonic crystals containing a plasma layer. Optical and Quantum Electronics. 53 633. 2021, 1-11.
  • Levinshtien, S. Rumyantsev, M. Shur, Handbook series on semiconductor parameters. World Scientific. 1996,.
  • Adachi, Optical Constants of Crystalline and Amorphous Semiconductors: numerical date and graphical information. Springer US, Boston, MA,. 1999, pp. 257–267.
  • H. J. Buschow, R. W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, P. Veyssi`ere. Eds.,, Encyclopedia of Materials: Science and Technology, Elsevier, Oxford. 2001, pp. 1441–1452.
  • Roumi, R R. Abdi- Ghaleh, Polar magneto- optical kerr effect of reflected from Graphene/ InAs/ Graphene/ Polyimide/ Al structure. Superlattices and Microstructures 158 107021. 2021, 1-10.
  • Roumi, R R. Abdi- Ghaleh, An analytical method to study the magneto- optical effects of a graphene sheet embedded between two magneto optical media. Journal of Magnetism and Magnetic Materials 536 168132. 2021, 1-7.
  • Roumi, R R. Abdi- Ghaleh, Tunable polar magneto- optical kerr rotation of light from a one- dimensional photonic crystal containing a graphene/ InAs slab at THz range. Physica E: Low- Dimensional Systems and Nanostructures 144 11545. 2022, 1-8.
  • Mehdian, Z. Mohammadzahery, A. Hasanbeigi, Magneto-optical properties of one-dimensional conjugated photonic crystal heterojunctions containing plasma layers. Applied Optics, 54, 26. 2015, 7949-7956.
  • P. Yin, T. B. Wang, and H. Z. Wang, Magneto-optical properties of one-dimensional conjugated magneto photonic crystals heterojunctions. Eur. Phys. J. B 85. 2012, 104-110.
  • W. Berreman, Optics in stratified and anisotropic media: 4×4-matrix formulation. J. Opt. Soc. Am. 62, 4. 1972, 502-510
  • Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, Theoretical analysis of optical and magneto- optical properties dimensional magnetophotonic crystals. J. Appl. Phys. 93, 7. 2003, 3906-3911.
  • E. Iacobescu, Study of the faraday rotation in a nematic liquid crystal doped with methyl orange. Physics AUC 20 1. 2010, 31-36.
  • Villa, J.A. Gaspar-Armenta, Photonic crystal to photonic crystal surface modes: narrow bandpass filters. Opt. Express. 12, 11. 2004, 2338-355.