نوع مقاله : پژوهشی

نویسندگان

1 'گروه فیزیک، دانشکده علوم پایه، دانشگاه ولی عصر (عج) رفسنجان

2 دانشگاه ارومیه

3 گروه فیزیک، دانشکده علوم، دانشگاه ولی عصر (عج) رفسنجان

4 دانشگاه ولی عصر (عج) رفسنجان

چکیده

در این کار، برای اولین بار به محاسبه‌ و بررسیِ رفتار کیفیِ آنتروپی و اثرات واهمدوسی در رادار چلانده دومدی کوانتومی زمانی‌که هدف حضور دارد و سیگنال تولید شده به سمت هدف ارسال می‌شود، پرداخته می‌شود. به طور کلی، واهمدوسی با کاهش خلوص حالت سامانه، یعنی انتقال از حالت خالص به حالت آمیخته همراه است. علاوه بر این با بررسی آنتروپی، درهم‌تنیدگی سامانه را برای تعداد مؤثر فوتون‌ها در ورودی آشکارساز بررسی می‌کنیم. افزون بر این، شرایط مختلف مؤثر بر بهبود عملکرد یک آشکارساز کوانتومی در رادار چلانده دو مدی کوانتومی مورد ارزیابی قرار می‌گیرد. حالت کوانتومی سامانه از حالت همدوس با افزایش دما و پارامتر چلاندگی (در دماهای بالا) به حالت ناهمدوس تبدیل می‌شود. اثرات واهمدوسی با پارامتر چلاندگی و توان سیگنال نسبت عکس دارد. نسبت فوتون‌های دریافتی در گیرنده با پارامتر چلاندگی و توان سیگنال نسبت مستقیم دارد. افزایش نسبت فوتون‌های دریافتی در گیرنده، هم آنتروپی سامانه را افزایش می‌دهد و هم اثرات واهمدوسی سامانه را کاهش می‌دهد که نتیجه بسیار مهمی است. علاوه بر این، رفتارهای کیفی‌ِ آنتروپی و خلوص کاملاً مشابه هستند.

کلیدواژه‌ها

[1] حسینی، سیدمحمد، نوروزی، میلاد، سیدیزدی، جمیله، ایران نژاد، فاطمه (1401). بررسی رفتار کیفی چلانیدگی و درهم‌تنیدگی در رادار چلانیده دو مدی کوانتومی. دوفصلنامه اپتوالکترونیک، (2)4, 17-26. doi: 10.30473/jphys. 2022.65651.1122
 
[2] E. Jung and D. Park, Quantum illumination with three-mode Gaussian state, Quantum Information Processing 21, no. 2 (2022): 1-10.
[3] S. H. Tan, B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, S. Pirandola, J. H. Shapiro, Quantum illumination with Gaussian states, Phys. Rev. Lett. 101, 253601 (2008).
[4] J. H. Shapiro, The quantum illumination story, IEEE Trans. Aerosp. Electron. Syst. Magazine. 35, 8-20 (2020).
[5] S. Barzanjeh, S. Pirandola, D. Vitali, J. M. Fink, Microwave quantum illumination using a digital receiver, Sci. Adv. 6, eabb0451 (2020).
[6] S. Barzanjeh, S. Guha, C. Weedbrook, D. Vitali, J. H. Shapiro, and S. Pirandola, Microwave quantum illumination, Phys. Rev. Lett. 114, 080503 (2015).
[7] Q. Cai, J. Liao, B. Shen, G. Guo, and Q. Zhou, Microwave quantum illumination via cavity magnonics, Phys. Rev. A 103, 052419 (2021).
[8] C. Weedbrook, S. Pirandola, J. Thompson, V. Vedral, and M. Gu, How discord underlies the noise resilience of quantum illumination. New J. Phys. 18, 043027 (2016).
[9] C. Noh, C. Lee and S. Y. Lee, Quantum illumination with definite photon-number entangled states. J. Opt. Soc. Am. B 39, no. 5 (2022): 1316-1322.
[10] J. Wang and K. M. Wong, Optical parametric amplifier detection for quantum illumination. In ICC 2022-IEEE International Conference on Communications, pp. 660-665. IEEE, 2022.
[11] S. Zhang, Stealth in quantum illumination with a probabilistic mixed strategy, J. Opt. Soc. Am. B 39, no. 7 (2022): 1799-1806.
[12] Q. Zhuang and J. H. Shapiro, Ultimate accuracy limit of quantum pulse-compression ranging, Physical review letters 128, no. 1 (2022): 010501.
[13] P. Livreri, E. Enrico, L. Fasolo, A. Greco, A. Rettaroli, D. Vitali, A. Farina, C. F. Marchetti and A. Sq D. Giacomin, Microwave quantum radar using a josephson traveling wave parametric amplifier, In 2022 IEEE Radar Conference (RadarConf22), pp. 1-5. IEEE, 2022.
[14] A. Karsa, J. Carolan, S. Pirandola, Quantum channel-position finding using single photons, Phys. Rev. A 105, no. 2 (2022): 023705.
[15] G. Spedalieri and S. Pirandola, Performance of coherent‐state quantum target detection in the context of asymmetric hypothesis testing, IET Quantum Communication (2022).
[16] B. H. Wu, Z. Zhang, Q. Zhuang, Continuous-variable quantum repeaters based on bosonic error-correction and teleportation: architecture and applications, Quantum Science and Technology 7, no. 2 (2022): 025018.
[17] Wang, Tiancheng, Souichi Takahira, and Tsuyoshi Sasaki Usuda, Error probabilities of quantum illumination with attenuation using maximum and non-maximum quasi-Bell states, IEEJ Transactions on Electronics, Information and Systems 142, no. 2 (2022): 151-161.
[18] S. Eshete, Quantum information transfer between optical and microwave output modes via cavity magnonics, J. Magn. Magn. Mater 549 (2022): 168987.
[19] I. B. Djordjevic, Entanglement assisted radars with transmitter side optical phase conjugation and classical coherent detection, IEEE Access, 10 (2022) 49095-49100.
[20] S. Y. Lee, Y. Jo, T. Jeong, J. Kim, D. H. Kim, D. Kim, D. Y. Kim, Y. S. Ihn, Z. Kim, Observable bound for Gaussian illumination, Phys. Rev. A 105, no. 4 (2022): 042412.
[21] L. Wang, P. Cai, Z. Liu, Z. Xie, Y. Fang, Role of carbon quantum dots on Nickel titanate to promote water oxidation reaction under visible light illumination, J. Colloid Interface Sci. 607 (2022): 203-209.
[22] A. O. C. Davis, G. Sorelli, V. Thiel, B. J. Smith, Quantum-enhanced interferometry by entanglement-assisted rejection of environmental noise, Phys. Rev. A 105, no. 2 (2022): 022601.
[23] D. Luong, C. W. S. Chang, A. M. Vadiraj, A. Damini, C. M. Wilson, B. Balaji, Receiver operating characteristics for a prototype quantum two-mode squeezing radar, IEEE Trans. Aerosp. Electron. Syst. 56, 2041-2060 (2019).
[24] N. Messaoudi, C. W. Chang, A. M. Vadiraj, J. Bourassa, B. Balaji, and C. M. Wilson, Quantum-enhanced noise radar, Bulletin of the American Physical Society 65 (2019).
[25] D. Luong, B. Balaji, C.W. S. Chang, V. M. A. Rao, and C. Wilson, Microwave quantum radar: An experimental validation, In 2018 International Carnahan Conference on Security Technology (ICCST), (IEEE, 2018), pp. 1-5.
[26] D. Luong, S. Rajan, and B. Balaji, Quantum Monopulse Radar, In 2020 International Applied Computational Electromagnetics Society Symposium (ACES), (IEEE, 2020), pp. 1-2.
[27] D. Luong, S. Rajan, and B. Balaji, Entanglement-based quantum radar: From myth to reality, IEEE Trans. Aerosp. Electron. Syst. Magazine 35, 22-35 (2020).
[28] D. Luong, S. Rajan, and B. Balaji, Are quantum radar arrays possible? In 2019 IEEE International Symposium on Phased Array System & Technology (PAST), (IEEE, 2019), pp. 1-4.
[29] D. Luong, B. Balaji, Quantum radar, quantum networks, not-so-quantum hackers, In Signal Processing, Sensor/Information Fusion, and Target Recognition XXVIII, vol. 11018. International Society for Optics and Photonics, (2019), p. 110181E.
[30] M. Frasca, A. Farina, Multiple Input-Multiple Output Quantum Radar, In 2020 IEEE Radar Conference (RadarConf20), (IEEE, 2020) pp. 1-4.
[31] L. Maccone and C. Ren, Quantum radar, Phys. Rev. Lett. 124, 200503 (2020).
[32] M. Lanzagorta, Quantum radar, Synthesis Lectures on Quantum Computing 3, 1-139 (2011).
[33] D. Luong, B. Balaji, Quantum two‐mode squeezing radar and noise radar: covariance matrices for signal processing, IET Radar, Sonar & Navigation 14, 97-104 (2020).
[34] D. Luong, S. Rajan, and B. Balaji, Quantum two-mode squeezing radar and noise radar: Correlation coefficients for target detection, IEEE Sens. J. 20, 5221-5228 (2020).
[35] D. Luong, B. Balaji, S. Rajan, Performance prediction for coherent noise radars using the correlation coefficient, IEEE Access 10, 8627-8633 (2022).
[36] M. Norouzi, S. M. Hosseiny, J. Seyed-Yazdi, M. H. Ghamat, Design and simulation of engineered Josephson parametric amplifier in quantum two-mode squeezed radar, (2022).
[37] K. Durak, Z. Seskir, B. Rami, Quantum Radar, In Quantum Computing Environments, pp. 125-165. Springer, Cham, 2022.
[38] P. Livreri, E. Enrico, L. Fasolo, A. Greco, A. Rettaroli, D. Vitali, A. Farina, C. F. Marchetti, A. Sq D. Giacomin, Microwave quantum radar using a josephson traveling wave parametric amplifier, In 2022 IEEE Radar Conference (RadarConf22), pp. 1-5. IEEE, 2022.
[39] Z. Tian, D. Wu, Y. Xu, X. Zhou, Y. Zhang, T. Hu, Closed-form model and analysis for the enhancement effect of a rectangular plate in the scattering characteristics of multiphoton quantum radar, Optics Express 30, no. 12 (2022): 20203-20212.
[40] D. Luong, B. Balaji, S. Rajan, A likelihood ratio detector for QTMS radar and noise radar, IEEE Transactions on Aerospace and Electronic Systems 58, no. 4 (2022) 3011-3020.
[41] D. Luong, B. Balaji, S. Rajan, Performance prediction for coherent noise radars using the correlation coefficient, IEEE Access 10 (2022) 8627-8633.
[42] N. Korolkova, G. Leuchs, R. Loudon, T. C. Ralph, C. Silberhorn, Polarization squeezing and continuous-variable polarization entanglement, Phys. Rev. A 65, no. 5 (2002): 052306.
[43] O. Glöckl, S. Lorenz, C. Marquardt, J. Heersink, M. Brownnutt, C. Silberhorn, Q. Pan, P. Van Loock, N. Korolkova, G. Leuchs, Experiment towards continuous-variable entanglement swapping: Highly correlated four-partite quantum state, Phys. Rev. A 68, no. 1 (2003): 012319.
[44] H. Liu, A. Helmy, B. Balaji, Inspiring radar from quantum-enhanced LiDAR, In 2020 IEEE International Radar Conference (RADAR), pp. 964-968. IEEE, 2020.
[45] H. Liu, B. Balaji, A. S. Helmy, Target detection aided by quantum temporal correlations: Theoretical analysis and experimental validation, IEEE Transactions on Aerospace and Electronic Systems 56, no. 5 (2020): 3529-3544.
[46] P. S. Blakey, H. Liu, G. Papangelakis, M. L. Iu, Y. Zhang, Z. M. Léger, A. S. Helmy, Quantum Enhanced LIDAR using Nonlocal Dispersion, In CLEO: Science and Innovations, pp. STu5O-4. Optica Publishing Group, 2022.
[47] V. Josse, A. Dantan, A. Bramati, M. Pinard, E. Giacobino, Continuous variable entanglement using cold atoms, Phys. Rev. Lett. 92, no. 12 (2004): 123601.
[48] G. Li, Ya-ping Yang, K. Allaart, and D. Lenstra, Entanglement for excitons in two quantum dots in a cavity injected with squeezed vacuum, Phys. Rev. A 69, no. 1 (2004): 014301.
[49] R. W. Rendell, A. K. Rajagopal, Entanglement of pure two-mode Gaussian states, Phys. Rev. A 72, no. 1 (2005): 012330.
[50] J. Martin, A. Micheli, V. Vennin, Discord and decoherence, J. Cosmol. Astropart. Phys. 2022, no. 04 (2022): 051.
[51] Scully, M., & Zubairy, M. Quantum Optics. Cambridge: Cambridge University Press (1997). doi:10.1017/CBO9780511813993.
[52] Nielsen, M. A., & Chuang, I. L. Quantum information and quantum computation. 10th Anniversary Edition. Cambridge: Cambridge University Press. 2010.
[53] S. Barzanjeh, M. Abdi, G. J. Milburn, P. Tombesi, D. Vitali, Reversible optical-to-microwave quantum interface, Phys. Rev. Lett. 109, no. 13 (2012): 130503.
[54] S. Barzanjeh, E. S. Redchenko, M. Peruzzo, M. Wulf, D. P. Lewis, G. Arnold, J. M. Fink, Stationary entangled radiation from micromechanical motion, Nature 570, no. 7762 (2019): 480-483.
[55] G. Adesso, A. Serafini, F. Illuminati, Entanglement, purity, and information entropies in continuous variable systems, Open Syst. Inf. Dyn. 12, no. 2 (2005): 189-205.
[56] J. S. Prauzner-Bechcicki, Two-mode squeezed vacuum state coupled to the common thermal reservoir, J. Phys. A Math. Gen. 37, no. 15 (2004): L173.
[57] A. Serafini, F. Illuminati, M. G. A. Paris, S. De Siena, Entanglement and purity of two-mode Gaussian states in noisy channels, Phys. Rev. A 69, no. 2 (2004): 022318.
[58] M. J. Woolley and A. A. Clerk, Two-mode squeezed states in cavity optomechanics via engineering of a single reservoir, Phys. Rev. A 89, no. 6 (2014) 063805