نوع مقاله : پژوهشی

نویسندگان

1 گروه فیزیک، دانشگاه صنعتی مالک اشتر، شیراز، ایران

2 گروه فیزیک، دانشگاه پیام نور، تهران، ایران

چکیده

هدف از این پژوهش ارائۀ روشی برای بررسی اثر سایز نانوذرات فلزی طلا، نقره و مس بر خواص اپتیکی شیشه‌ها است. بدین ترتیب که نانوذرات کروی با کسر حجمی کمتر از 1/0 (به منظور چشم پوشی از برهم کنش بین آنها) در شیشه‌ها توزیع می‌شوند و با استفاده از روش تی- ماتریس ضریب دی‌الکتریک مؤثر آنها به صورت تابعی از اندازه (شعاع) نانوذرات و کسر حجمی آنها در طول موج‌های مختلفی به دست می‌آید و مشخص می‌گردد که  ضریب دی‌الکتریک مؤثر محیط مرکب با افزایش شعاع نانوذرات به طور چشمگیری افزایش می‌یابد؛ به ویژه زمانی که کسر حجمی نانوذرات نیز زیادتر باشد. در طول موج 1020 نانومترنانوذرات مس درون شیشه چلکوجناید بیشترین ضریب دی‌الکتریک را دارند. در پایان نیز نمودارهای مربوط رسم می‌گردد.

کلیدواژه‌ها

[1] Zakery A, Elliott SR. Optical properties and applications of chalcogenide glasses: a review. Journal of Non-Crystalline Solids. 2003 Nov 15;330(1-3):1-2.
[2] Ogusu K, Yamasaki J, Maeda S, Kitao M, Minakata M. Linear and nonlinear optical properties of Ag–As–Se chalcogenide glasses for all-optical switching. Optics letters. 2004 Feb 1;29(3):265-7.
[3] Brandes RG, Laming FP, Pearson AD. Optically Formed Dielectric Gratings in Thick Films of Arsenic–Sulfur Glass. Applied Optics. 1970 Jul 1;9(7):1712-4.
[4] Maxwell GJ. Colours in metal glasses and in metallic films. Phil. Trans. R. Soc. London. 1904;203:385-420.
[5] Garnett JM. VII. Colours in metal glasses, in metallic films, and in metallic solutions.—II. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character. 1906 Jan 1;205(387-401):237-88.
[6] Agarwal GS, Gupta SD. T-matrix approach to the nonlinear susceptibilities of heterogeneous media. Physical Review A. 1988 Dec 1;38(11):5678.
[7] Qi X, Nieminen TA, Stilgoe AB, Loke VL, Rubinsztein-Dunlop H. Comparison of T-matrix calculation methods for scattering by cylinders in optical tweezers. Optics letters. 2014 Aug 15;39(16):4827-30.
[8] Waterman PC. T-matrix methods in acoustic scattering. The journal of the acoustical society of america. 2009 Jan;125(1):42-51.
[9] Gharaati A, Kamaldar A. Enhancement of nonlinear optical properties of compounds of silica glass and metallic nanoparticle. Pramana. 2016 Jun;86:1329-42. and metallic nanoparticle. Pramana. 2016 Jun;86:1329-42.
[10] Robert G. Brown, Classical Electrodynamics part II, Durham, NC 27708-0305, (2007) 135-137.
[11] Sarychev AK, Shalaev VM. Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites. Physics Reports. 2000 Sep 1;335(6):275-371.
[12] Joseph S, Sarkar S, Khan S, Joseph J. Exploring the optical bound state in the continuum in a dielectric grating coupled plasmonic hybrid system. Advanced Optical Materials. 2021 Apr;9(8):2001895.
[13] Joseph S, Sarkar S, Joseph J. Grating-coupled surface plasmon-polariton sensing at a flat metal–analyte interface in a hybrid-configuration. ACS Applied Materials & Interfaces. 2020 Sep 23;12(41):46519-29.
[14] Rodríguez-de Marcos LV, Larruquert JI, Méndez JA, Aznárez JA. Self-consistent optical constants of SiO 2 and Ta 2 O 5 films. Optical Materials Express. 2016 Nov 1;6(11):3622-37.
[15] Kischkat J, Peters S, Gruska B, Semtsiv M, Chashnikova M, Klinkmüller M, Fedosenko O, Machulik S, Aleksandrova A, Monastyrskyi G, Flores Y. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. Applied optics. 2012 Oct 1;51(28):6789-98.
[16] Gao L, Lemarchand F, Lequime M. Refractive index determination of SiO2 layer in the UV/Vis/NIR range: spectrophotometric reverse engineering on single and bi-layer designs. Journal of the European Optical Society-Rapid publications. 2013 Jan 31;8.
[17] Prokhorov AV, Shesterikov AV, Gubin MY, Volkov VS, Evlyukhin AB. Quasitrapped modes in metasurfaces of anisotropic MoS 2 nanoparticles for absorption and polarization control in the telecom wavelength range. Physical Review B. 2022 Jul 14;106(3):035412.
[18] Ciesielski A, Skowronski L, Trzcinski M, Szoplik T. Controlling the optical parameters of self-assembled silver films with wetting layers and annealing. Applied Surface Science. 2017 Nov 1;421:349-56.
[19] Jiang Y, Pillai S, Green MA. Realistic silver optical constants for plasmonics Sci.
[20] Choi J, Cheng F, Cleary JW, Sun L, Dass CK, Hendrickson JR, Wang CY, Gwo S, Shih CK, Li X. Optical dielectric constants of single crystalline silver films in the long wavelength range. Optical Materials Express. 2020 Feb 1;10(2):693-703.
[21] McPeak KM, Jayanti SV, Kress SJ, Meyer S, Iotti S, Rossinelli A, Norris DJ. Plasmonic films can easily be better: rules and recipes. ACS photonics. 2015 Mar 18;2(3):326-33.
[22]  Joseph S, Sarkar S, Khan S, Joseph J. Exploring the optical bound state in the continuum in a dielectric grating coupled plasmonic hybrid system. Advanced Optical Materials. 2021 Apr;9(8):2001895.
[23] Rosenblatt G, Simkhovich B, Bartal G, Orenstein M. Nonmodal plasmonics: Controlling the forced optical response of nanostructures. Physical Review X. 2020 Mar 25;10(1):011071.
[24] Yakubovsky DI, Stebunov YV, Kirtaev RV, Ermolaev GA, Mironov MS, Novikov SM, Arsenin AV, Volkov VS. Ultrathin and ultrasmooth gold films on monolayer MoS2. Advanced Materials Interfaces. 2019 Jul;6(13):1900196.
[25] Yakubovsky DI, Arsenin AV, Stebunov YV, Fedyanin DY, Volkov VS. Optical constants and structural properties of thin gold films. Optics express. 2017 Oct 16;25(21):25574-87.
[26] Ciesielski A, Skowronski L, Trzcinski M, Górecka E, Trautman P, Szoplik T. Evidence of germanium segregation in gold thin films. Surface Science. 2018 Aug 1;674:73-8.
[27] Babar S, Weaver JH. Optical constants of Cu, Ag, and Au revisited. Applied Optics. 2015 Jan 20;54(3):477-81