نوع مقاله : پژوهشی

نویسندگان

1 دانشجو کارشناسی ارشد

2 دانشیار ، دانشگاه صنعتی شیراز، شیراز، ایران

چکیده

اخیرا موجبرهای آرایه‌ای برای طراحیِ پردازشگرهای فوق سریع نوری، خصوصا در زمینه هوش مصنوعی مورد توجه قرار گرفته‌اند. در این مقاله ابتدا با نرم‌افزار لومریکال ثابت انتشار هر موجبر را به صورت جداگانه بدست آورده، و با استفاده از نرم افزار متلب به محاسبه سوپر مدهای یک آرایه موجبری متشکل از 6 موجبر پرداخته ایم. با استفاده از نظریه مد جفت‌شده موجبر آرایه‌ای با 6 موجبرِ متشکل از هسته چالکوجناید بر روی عایق را طراحی و سوپرمدهای متناظر را بدست‌ آوردیم. نشان داده‌ایم که استفاده از مواد چلکوجناید میتواند با طول کوچکتری برای مجتمع سازی مدارهای نوری استفاده شده و بعلاوه برای طراحی ابزارهای نوری غیرخطی بعلت ضریب غیرخطی زیاد مواد چالکوجناید میتوان استفاده کرد.

کلیدواژه‌ها

  • Tsang M. Efficient superoscillation measurement for incoherent optical imaging. IEEE Journal of Selected Topics in Signal Processing. 2022 Oct 5.
  • Atabaki AH, Moazeni S, Pavanello F, Gevorgyan H, Notaros J, Alloatti L, Wade MT, Sun C, Kruger SA, Meng H, Al Qubaisi K. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature. 2018 Apr 19;556(7701):349-54.
  • Shainline JM, Buckley SM, Mirin RP, Nam SW. Superconducting optoelectronic circuits for neuromorphic computing. Physical Review Applied. 2017 Mar 23;7(3):034013.
  • Paquot Y, Duport F, Smerieri A, Dambre J, Schrauwen B, Haelterman M, Massar S. Optoelectronic reservoir computing. Scientific reports. 2012 Feb 27;2(1):287.
  • Bangari V, Marquez BA, Miller H, Tait AN, Nahmias MA, De Lima TF, Peng HT, Prucnal PR, Shastri BJ. Digital electronics and analog photonics for convolutional neural networks (DEAP-CNNs). IEEE Journal of Selected Topics in Quantum Electronics. 2019 Oct 4;26(1):1-3.
  • Ying Z, Feng C, Zhao Z, Dhar S, Dalir H, Gu J, Cheng Y, Soref R, Pan DZ, Chen RT. Electronic-photonic arithmetic logic unit for high-speed computing. Nature communications. 2020 May 1;11(1):2154.
  • Hamerly R, Bernstein L, Sludds A, Soljačić M, Englund D. Large-scale optical neural networks based on photoelectric multiplication. Physical Review X. 2019 May 16;9(2):021032.
  • Shen Y, Harris NC, Skirlo S, Prabhu M, Baehr-Jones T, Hochberg M, Sun X, Zhao S, Larochelle H, Englund D, Soljačić M. Deep learning with coherent nanophotonic circuits. Nature photonics. 2017 Jul;11(7):441-6.
  • Hughes TW, Minkov M, Shi Y, Fan S. Training of photonic neural networks through in situ backpropagation and gradient measurement. Optica. 2018 Jul 20;5(7):864-71.
  • Harris NC, Carolan J, Bunandar D, Prabhu M, Hochberg M, Baehr-Jones T, Fanto ML, Smith AM, Tison CC, Alsing PM, Englund D. Linear programmable nanophotonic processors. 2018 Dec 20;5(12):1623-31.
  • Pérez D, Gasulla I, Capmany J. Programmable multifunctional integrated nanophotonics. Nanophotonics. 2018 Jul 28;7(8):1351-71.
  • Pérez-López D, López A, DasMahapatra P, Capmany J. Multipurpose self-configuration of programmable photonic circuits. Nature communications. 2020 Dec 11;11(1):6359.
  • Williamson IA, Hughes TW, Minkov M, Bartlett B, Pai S, Fan S. Reprogrammable electro-optic nonlinear activation functions for optical neural networks. IEEE Journal of Selected Topics in Quantum Electronics. 2019 Jul 23;26(1):1-2.
  • Pai S, Bartlett B, Solgaard O, Miller DA. Matrix optimization on universal unitary photonic devices. Physical review applied. 2019 Jun 19;11(6):064044.
  • Pérez D, Capmany J. Scalable analysis for arbitrary photonic integrated waveguide meshes. Optica. 2019 Jan 20;6(1):19-27.
  • Bogaerts W, Pérez D, Capmany J, Miller DA, Poon J, Englund D, Morichetti F, Melloni A. Programmable photonic circuits. 2020 Oct 8;586(7828):207-16.
  • Spall J, Guo X, Barrett TD, Lvovsky AI. Fully reconfigurable coherent optical vector–matrix multiplication. Optics Letters. 2020 Oct 15;45(20):5752-5.
  • Tanomura R, Tang R, Suganuma T, Okawa K, Kato E, Tanemura T, Nakano Y. Monolithic InP optical unitary converter based on multi-plane light conversion. Optics Express. 2020 Aug 17;28(17):25392-9.
  • Annoni A, Guglielmi E, Carminati M, Ferrari G, Sampietro M, Miller DA, Melloni A, Morichetti F. Unscrambling light—automatically undoing strong mixing between modes. Light: Science & Applications. 2017 Dec;6(12):e17110-.
  • Melati D, Alippi A, Melloni A. Reconfigurable photonic integrated mode (de) multiplexer for SDM fiber transmission. Optics express. 2016 Jun 13;24(12):12625-34.
  • Chakravarty S, Teng M, Safian R, Zhuang L. Hybrid material integration in silicon photonic integrated circuits. Journal of Semiconductors. 2021 Apr 1;42(4):041303.
  • Harris NC, Steinbrecher GR, Prabhu M, Lahini Y, Mower J, Bunandar D, Chen C, Wong FN, Baehr-Jones T, Hochberg M, Lloyd S. Quantum transport simulations in a programmable nanophotonic processor. Nature Photonics. 2017 Jul 1;11(7):447-52.
  • Carolan J, Mohseni M, Olson JP, Prabhu M, Chen C, Bunandar D, Niu MY, Harris NC, Wong FN, Hochberg M, Lloyd S. Variational quantum unsampling on a quantum photonic processor. Nature Physics. 2020 Mar 2;16(3):322-7.
  • Carolan J, Harrold C, Sparrow C, Martín-López E, Russell NJ, Silverstone JW, Shadbolt PJ, Matsuda N, Oguma M, Itoh M, Marshall GD. Universal linear optics. 2015 Aug 14;349(6249):711-6.
  • Taballione C, Wolterink TA, Lugani J, Eckstein A, Bell BA, Grootjans R, Visscher I, Geskus D, Roeloffzen CG, Renema JJ, Walmsley IA. 8× 8 reconfigurable quantum photonic processor based on silicon nitride waveguides. Optics express. 2019 Sep 16;27(19):26842-57.
  • Taballione C, van der Meer R, Snijders HJ, Hooijschuur P, Epping JP, de Goede M, Kassenberg B, Venderbosch P, Toebes C, Vlekkert HV, Pinkse PW. A 12-mode universal photonic processor for quantum information processing. arXiv preprint arXiv:2012. 05673. 2020 Dec 10.
  • Kim JH, Aghaeimeibodi S, Carolan J, Englund D, Waks E. Hybrid integration methods for on-chip quantum photonics. Optica. 2020 Apr 20;7(4):291-308.
  • Bravo-Prieto C, García-Martín D, Latorre JI. Quantum singular value decomposer. Physical Review A. 2020 Jun 4;101(6):062310.
  • Adcock JC, Bao J, Chi Y, Chen X, Bacco D, Gong Q, Oxenløwe LK, Wang J, Ding Y. Advances in silicon quantum photonics. IEEE Journal of Selected Topics in Quantum Electronics. 2020 Sep 24;27(2):1-24.
  • Wang J, Paesani S, Ding Y, Santagati R, Skrzypczyk P, Salavrakos A, Tura J, Augusiak R, Mančinska L, Bacco D, Bonneau D. Multidimensional quantum entanglement with large-scale integrated optics. 2018 Apr 20;360(6386):285-91.
  • Flamini F, Spagnolo N, Sciarrino F. Photonic quantum information processing: a review. Reports on Progress in Physics. 2018 Nov 13;82(1):016001.
  • Wang J, Sciarrino F, Laing A, Thompson MG. Integrated photonic quantum technologies. Nature Photonics. 2020 May;14(5):273-84.
  • Flamini F, Spagnolo N, Viggianiello N, Crespi A, Osellame R, Sciarrino F. Benchmarking integrated linear-optical architectures for quantum information processing. Scientific Reports. 2017 Nov 9;7(1):15133.
  • Pant M, Towsley D, Englund D, Guha S. Percolation thresholds for photonic quantum computing. Nature communications. 2019 Mar 6;10(1):1070.
  • Dyakonov IV, Pogorelov IA, Bobrov IB, Kalinkin AA, Straupe SS, Kulik SP, Dyakonov PV, Evlashin SA. Reconfigurable photonics on a glass chip. Physical Review Applied. 2018 Oct 19;10(4):044048.
  • Armstrong S, Morizur JF, Janousek J, Hage B, Treps N, Lam PK, Bachor HA. Programmable multimode quantum networks. Nature communications. 2012 Jan;3(1):1026.
  • Erhard M, Krenn M, Zeilinger A. Advances in high-dimensional quantum entanglement. Nature Reviews Physics. 2020 Jul 14;2(7):365-81.
  • Smith AM, Jacinto HS. Reconfigurable integrated optical interferometer network-based physically unclonable function. Journal of Lightwave Technology. 2020 May 20;38(17):4599-606.
  • Sparrow C, Martín-López E, Maraviglia N, Neville A, Harrold C, Carolan J, Joglekar YN, Hashimoto T, Matsuda N, O’Brien JL, Tew DP. Simulating the vibrational quantum dynamics of molecules using photonics. 2018 May 31;557(7707):660-7.
  • Knill E, Laflamme R, Milburn GJ. A scheme for efficient quantum computation with linear optics. nature. 2001 Jan 4;409(6816):46-52.
  • Tang R, Tanomura R, Tanemura T, Nakano Y. Ten-port unitary optical processor on a silicon photonic chip. ACS Photonics. 2021 Jun 11;8(7):2074-80.
  • Thomson JJ. Notes on recent researches in electricity and magnetism: intended as a sequel to Professor Clerk-Maxwell's Treatise on electricity and magnetism. Cambridge University Press; 1893.
  • Ramsay JF. Microwave antenna and waveguide techniques before 1900. Proceedings of the IRE. 1958 Feb;46(2):405-15.
  • Kogelnik H, Shank CV. Coupled‐wave theory of distributed feedback lasers. Journal of applied physics. 1972 May;43(5):2327-35.
  • Hardy A, Streifer W. Coupled mode theory of parallel waveguides. Journal of lightwave technology. 1985 Oct;3(5):1135-46.
  • Huang WP. Coupled-mode theory for optical waveguides: an overview. JOSA A. 1994 Mar 1;11(3):963-83.
  • Chiang KS. Coupled-zigzag-wave theory for guided waves in slab waveguide arrays. Journal of lightwave technology. 1992 Oct;10(10):1380-7.
  • Payne FP. An analytical model for the coupling between the array waveguides in AWGs and star couplers. Optical and quantum electronics. 2006 Jan;38:237-48.
  • Cooper ML, Mookherjea S. Numerically-assisted coupled-mode theory for silicon waveguide couplers and arrayed waveguides. Optics Express. 2009 Feb 2;17(3):1583-99.
  • Yeh P, Hendry M. Optical waves in layered media. Physics Today. 1990 Jan;43(1):77.