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Abstract

As a new approach based on a multiple scale pertur-
bation theory, we have founded clearly that ionization
in a hollow-core photonic crystal fiber filled by an
ionizable gas leads to a soliton self-frequency
blueshift, opposite to redshift due to Raman self-
frequency. To analyze the hollow-core photonic crys-
tal fiber under a general perturbation, we convert the
problem into a system of ordinary differential equa-
tions which govern the soliton parameters. It is worth
comparing the results with those of Saleh et al
[Phys.Rev.Lett. 107, 203902 (2011)] applying a vari-
ational perturbation method with a posteriori. We
have obtained just the same result with no posteriori.
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Introduction

Hollow-core photonic crystal fibers (HC-
PCFs) have been the focus of a number of
studies over the last years [1,2,3,15,16]. HC-
PCFs represent a kind of silica waveguides
with the central air core surrounded by the
microstructured cladding of periodic air hole.
An important advantage of HC-PCFs is that
light is guided in the hollow core, preparing a
strong background for investigating light-
matter interactions when these fibers are filled
with a gas [4,5]. HC-PCFs with the so-called
kagome-lattice have experienced considerable
breakthrough in nonlinear optics. Via filling
air holes with different gases, new phenome-
na and applications in these fibers can be
demonstrated. Therefore the nonlinearity and
the group velocity dispersion can be varied by
changing the gas pressure, allowing the con-
trol of many important nonlinear effects in the
gas such as stimulated Raman scattering, soli-
ton dynamics and so on [6,7]. Recently, these
fibers have successfully been used to demon-
strate a limited ionization-induced blue-shift
of guided ultrashort pulses [8].

Saleh et al applied a model to study the
pulse propagation in gas-filled hollow-core
photonic crystal fibers which neglect losses
for the first time [9]. To obtain the results,
they were required to apply a posteriori. They
assumed that the soliton functional shape to
be unchanged during the action of the pertur-
bation.

We start with the model presented by
Saleh et al, apply a new method, multiscale
perturbation method and derive the system of
coupled equations govern evaluation of the
soliton parameters. It is possible to obtain just
the same results and, thus, there is no need for
posteriori to obtain the results. To map out the
contents of the present study, in section 2 we
introduce the model proposed by Saleh et al.
In section 3, the proposed approach is applied
to the perturbed nonlinear Schrédinger equa-
tion and the coupled equations which govern
the evaluation of soliton parameters are de-
rived. This system of ordinary differential
equations can be solved by the analytical or
numerical methods. In section 4 we compare
our solutions with those obtained by Saleh et
al in [9,10]. The paper is concluded by a con-
clusion section.

Physical Background
In an HC-PCF filled with an ionized Raman-
active gas, light propagation is described by
the following coupled equations [9,10]:
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Where ¥(z,t) is the electric field enve-
lope, z is the longitudinal coordinate along the
fiber, t is the time in reference frame moving
with the pulse group velocity, D(id,) =
Y ms2 Bm (i0,)™/m! is the full dispersion
operator, B, is the mth order dispersion coef-
ficient calculated at an arbitrary reference
frequency wg, v is the Kerr nonlinear coef-
ficient of gas, R(t) = (1 — p)&(t) + ph(t)
is the normalized Kerr and Raman response
function of gas, §(t) is the Dirac delta func-
tion, p is the relative strength of the non-
instantaneous Raman nonlinearity, and h(t)
is the causal Raman response function of the
gas [8,11]. The symbol ® denotes the time
convolution [A®B = [A(t -
t)B(t)dt' =[B(¢ —t") A(t)dt], cis the
speed of light, kg = wg/c, wq is the pulse

1
central frequency, w, = [e*n./(eym,)]z is
the plasma frequency associated with an elec-
tron density n,, e and m are the electron
charge and mass, respectively. €, is the vacu-
um permittivity; @ = a; + a5, is the total loss
coefficient, a, is the fiber loss, a, =

AcsrUp . TP
e d:n, is the ionization-induced loss

term, Ay is the effective optical mode area;
U, is the ionization energy of the
gas; ANPI? = [¥|2 = P13, , P17 = 14,4,
|¥IZ, = ItnAers, and ny is the total number
density of ionizable atoms in the fiber, associ-
ated with the maximlfm plasma frequency

wr = [eZnT/(Epme)]E._ . -
For pulses with maximum intensities just

above the ionization threshold, the ionization

loss is not large and can be neglected as a first
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approximation. Hence the two coupled equa-
tions can be replaced by [9, 10]:

[i0¢ + D(i0;) + R(DBI (D> — d]w
=0 3

0cp = o(pr — P)lyl? (4)

Where = [yxzo¥, € = % and T =é
are normalized versions of the propagation
distance z and t in a reference frame that
move at group velocity, r(t) = R(t)tg, ¢ =
%kozo(Z—Z)z D pr = %kOZO(Z—Z)Z represents
the maximum plasma frequency wy,, kg is the
corresponding vacuum wavenumber and ¢ =
— 2% refers to photonization cross-section
AeffYKZo

£ is
|B2(wo)l
the second order dispersion length at the ref-
erence frequency w, , B, is the second order
dispersion coefficient and ¢t is the input pulse
duration.

The second equation [4] can be solved an-

alytically,  ¢(r) = {1 — e~ v(@) ary
with the initial condition ¢(—c0) = 0, corre-
sponding to the absence of any plasma before
the pulse arrives.

For a small ionization cross section the
two coupled equations can be reduced to a
single generalized nonlinear Schrédinger
equation [9, 10]:

o’. On these latter relations, z, =

oy 10t oly?
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Where n = o and 75 = fowr'r(rl)drl.
This equation is a perturbed nonlinear Schro-
dinger equation (NLSE) in which the fourth
and fifth terms are the perturbation function.
The fifth term includes a derivation of the
field intensity and represents the Raman Ef-
fect while the fifth term includes an integral
on the same equality and represents the ioni-

zation effect. In addition, this equation shows
clearly that the effect of ionization is essen-
tially opposite to that of the Raman Effect. In
order to investigate the Raman and ionization
effects on the dynamic of solitons, we first
apply the multiscale perturbation theory for
the perturbed NLSE in the general case.

Perturbation Theory for a Nonlinear
Schrodinger Equation

A powerful approach to solving a large class
of nonlinear systems with a very nice approx-
imate solution is based on the multiscale per-
turbation theory [12]. We consider the per-
turbed NLSE as

oY 1%y )
la—§+§ﬁ+l\vl v

= 6R(¢7 lpfﬂlp‘r) (6)

Where R is a small perturbation

In the absence of perturbation e = 0, the
general solution of the NLSE contains soliton
waves. A soliton is described by four parame-
ters:

Y&, 1) = ASech[A(T — 6¢ +
7)]ellor3(67 =475+ 0] @

Where A, §, T, and ¢, are constants and
include physical information. These parame-
ters represent amplitude, frequency, position
and phase of the soliton, respectively [11]. In
the presence of a small perturbation, the four
soliton parameters will be varied. We seek a
perturbation expansion 1 as follows,

Y =Yg +epy+ - ®)

Where 1, denotes the N-soliton solution
which satisfies the NLSE.

Since the weak perturbations affect a soli-
ton, the soliton parameters will be varied.
Therefore we introduce the temporal time and
phase of soliton as:

3
() = fo 5(8)dE = 10 () ©)



1396 liane; (7 (o) pow ojlosd pgd Jlo Sy yiSllgnl aslibad 34

18 ,
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Note. The important property,
lim ey (5 r) =0 (11)
€—0 1 6,

for fixed ¢, is called the secularity condi-
tion [12]. This condition claims that ey, re-
mains small for space as large as O(e™1).
Due to applying the secularity condition, v,
no longer satisfies NLSE. Instead,

o, 107

T 552 * [Yol*po = 0(e) (12)

Substituting (8) into (6), we find that the
results for the first-order 1, :

(i(% + 0311) (—lpwl;)
=) -1() @

Where o3 is the third Pauoli spin matrix
and the Hermitian matrix H is given by [13]:

1 92
292 T 2lyol* 93

H= 1 92 (14)

2x 107 2
0 2 aTZ + 2|¢0|
For convenience we define,

o= (lplflpI)T#P = (R7 _R*)T’
Q = i(Wor Yo )" ¥ = (Yo, 10")"

Therefore Equation (13) can be written as
LO=P—-Q (15)

Itis clear that,

4N
Q=1 (Ajg ha, *+ Topjetbre,, + S,

j=1
+ bojebg,)  (16)

We only need to study the null space of

the operator L = i% + o3 H. This space con-

sists of two explicit discrete and continuous
subspaces. The continuous subspace with
eigenfunctions ®.(¢,1,A) is related to dis-
persive waves while the discrete subspace is
related to solitons. The discrete and continu-
ous eigenfunctions form a complete set for
linear equation(15) [13]. The discrete compo-
nent of L is 4N-dimensional and is spanned
by the set,

{6‘1’ v oY oY
_l_l_l_l_]

=12,.. N} 17)

Due to this completeness, the inner prod-
uct is defined by:

+o0 T
W) = f Wy (18)

We can expand the solution ® and forcing
function P — @ into this complete set:

4N
o= Z(alj 1/JA]‘ + aZjlpTopj + a3jlp5j

=
+ a4j¢¢0j)
+ f Gy, (6,7, 2)dA (19)
4N
P=Q= > (bij s, + bajbe,,, + baybs,
j=1

+ b4j¢¢0j)
+fD/1(DC (¢,7,1)dA (20)

To obtain the equations which determine
the evaluation of soliton parameters, accord-
ing to the procedure that has been used by
Yang [14], we find the nonzero inner prod-
ucts of the discrete eigenfunctions as:

and

(Wa, V) = 20
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The next step is to form the inner products

of set {wa.vs e, g, j =12....N} and
Eq.(20). In order to avoid the secular terms
which will invalidate the perturbation expan-
sion, we enforce the condition by ; = 0.

Therefore, we can derive the system of
coupled equations which govern the evalua-
tion of the soliton parameters as follows,

Ajg = =5(Pg,) (1)

Toje = ZiA]_mwsp 22)

€

6]%’ = _2—Aj<PV¢TOJ-) (23)

bojg = —5(Piba)  (24)

For a single soliton we find that,

Ag = = (P.ipg,) (25)
T = =5 (PLs) +8 (26)
6 = =5 (P.ibe,) @7

1
b= -5 —A)+S(P)  (28)

Here,

(P,y)) = 2Re f+szp* dt (29)

Where Re stands for the real part.

By integrating these coupled ordinary dif-
ferential equations, we will find the evalua-
tion of soliton parameters in the presence of a
general perturbation.

The Effect of Raman and lonization on
Soliton Dynamics

In an HC-PCF filled with an ionizable Ra-
man-active gas, pulse propagation is gov-
erned by Equation (5):

oY  19%*P alyl?
— 4+ ——— + |y]?y —
TR lwl*w — try e

T
- nwf ly|?dz" =0

This equation can be solved using the
multiscale perturbation theory, where the
small perturbation is given by:

alyl? T ,
€R = Tpy—— +nwf lyl?dz” (30)

Substituting (30) for Eqgs.(25)-(28) yields
the following straightforward coupled ordi-
nary differential equations:

Ag =0 (31)

Te =0 (32)
O = 8 A* 2 A? 33
¢ = —(p At - 547 (39)

b= 502 M) 40 (34)

By introducing a new parameter g from
[9,10] and integrating these differential equa-
tions, we get the evaluation of soliton parame-
ters as follows,

A($) = A(0) = 4 (35)
7 (§) = —g¢? (36)

5(5) = _gf = 6Raman + 5ion (37)
1 1
() = =597 + 5 (Ao + 20)Aof (38)

Where = Ired + Iblue » Gred = %TRAg
and Iblue = —§?7A(2)-

Depending on the values of , 7z and A,
g can be positive, negative or zero.

The solution shows clearly that ionization
leads to a soliton self-frequency blueshift,
opposite to redshift due to Raman self-
frequency. In the time domain, ionization ef-
fect produces a constant pulse acceleration
while Raman effect produces a pulse deceler-
ation.

The results are exactly the same as those
obtained by Saleh [9,10].
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Conclusion

We began with the perturbed nonlinear
Schrodinger equation and applied it to a hol-
low-core photonic crystal fiber filled with an
ionizable gas. Using a multiple scale pertur-
bation theory, the problem was converted to
the system of ordinary differential equation.
In the present paper we continueed our exact
analysis and showed that the resulting formu-
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