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Abstract

If the dielectric between two superconductors of the
Josephson junction is homogeneous the governing
equation for the phase of the system can be described
by the sine-Gordon equation. In this paper, we con-
sider inhomogeneous dielectric medium, such that the
dielectric constant is position dependent. Then, we
derive the sine-Gordon equation correspondence of
this system and find its analytical and numerical soli-
ton solutions. We simulate the particle behavior of
the soliton solutions, and finally, we show that they
obey the Newtonian’s second law of motion.
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Introduction

One of the most successful testing grounds
for nonlinear wave theory is the Josephson
transmission line. Such transmission lines are
used for information processing and storage.
In a long Josephson junction or transmission
line, the physical quantity of interest is a
guantum of magnetic flux, or a fluxon, which
has a soliton behavior. Consequently, it can
be used as a basic bit in information pro-
cessing systems. It can be shown that the
governing equation for this phenomenon is
the sine-Gordon equation [1, 2]. The tunnel-
ing effect of Cooper pairs across a thin insula-
tor between two superconductors was pre-
dicted by B. D. Josephson [3-6]. If two super-
conductors are separated by a thin insulator or
non-superconductor, super current can flow
from one superconductor to another; this is
known as Josephson effect [7].

When two superconductors are separated
by a distanced , if d is large, the wave func-
tions and phases of two superconductors are
independent. If d is small, single electrons
can flow from one superconductor to another
with tunneling phenomenon. If d is very

small about 30 A°, cooper pair can flow from
one superconductor to another. Josephson
discovered if two superconductors are sepa-
rated by very small layer insulator, cooper
pair can be tunneling from one superconduc-
tor to another and this junction is called Jo-
sephson junction. In Josephson junction some
special and interesting phenomena can occur.
The most important one is to appear fluxons.

Fluxon is a circulating super current across
the insulator layer Josephson junction.

If a bias current applied to a fluxon, it can
be forced to move along the junction, when
circulating current induces a magnetic filed,
the fluxon can endure a Lorenz force, thus the
fluxon starts to move along junction with in-
creasing speed until it reaches the maximum
speed that is balanced between the dissipative
effects and Lorenz force fluxon in Josephson
junction.

In sec. 2 we will derive sine-Gordon equa-
tion that governs Josephson junction. Any
spatial variation in the dielectric permeability

€ or variation in the separation between two
superconductors, results in a position-
dependent of capacitance and inductance.
This -in turn- affects the propagation of kinks
in the junction. The situation can be approxi-
mated by the classical analog of a point parti-
cle moving in a velocity dependent external
potential. We will discuss this further in sec 3.
In sec 4 we will discuss numerical calculation
and give some example. Finally, we conclude
our discussion with conclusion and results.

Derivation of Sine-Gordon Equation in
Josephson Junction

Electrons can move as Cooper pairs in each
superconductor. If the common macroscopic
wave function of all the electron pairs is writ-
ten as,

y =,Re" [1]

where R is the Cooper pair density and T is

the quantum phase common to all the pairs, in
this case, the two superconductors will natu-

rally have independent wave functions Yy,

and Yy, with uncorrelated phases f, and f,,
unless the two superconductors are set near
enough to each other, say less than about 30
A°. See Figure 1. The phases then become
correlated because of Cooper pair penetration
through the insulator barrier.
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Fig 1. Two coupled superconductor with weak
link and

amplitude of macroscopic wave function of
two superconductors.

The wave functions Y, and Yy, satisfy
two coupled linear Schrodinger equations [8]

ih%ijyﬁkyz, @
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where E, and E, are the ground state ener-

gies of electrons in the two superconductors.
Here, we have assumed that the two super-

conductors are similar. K is a real coupling
constant which depends on the characteristics
of the junction. Obviously, if d ® ¥ then
k®O0, where d is the barrier thickness.
When a static potential difference V' is main-
tained between the two superconductors, an
energy shift E, - E, =2eV is developed.
We can arbitrarily choose the reference ener-
gy at E=(E,+E,)/2=0, and therefore
E, =eVandE, = -eV. Equations (2) and
(3) then respectively become

Y1 = ey, +ky,, @)
It
ih% = —eWy, +ky,. ©)

Using the expressions y, =+/R,e'™ and
Y, =+/R,e"™ in these equations and sepa-
rating the real and imaginary parts, we obtain

h’I"—Ffl = -2k RR,sinf, ©)
h":T—F:Z - +2k/RR, sinf, @

hﬂﬂ—?zk R, /R, cost -eV (8)

hﬂ—]c2= kyR /R, cosf +eV, )

It

in whicht =T, - T, is the phase difference
between the two wave functions.

Let us define the quantities J, = R, /flt and
J,=TR,/ft . R, and R, represent elec-
tron pair densities which deviate only slightly
from their equilibrium values R,. We there-

R»R,»R, and
(2k/h)yRR, » 2kR,/h=1J, and there-

fore

fore have

J » J,sinf, (10)

according to (6) or (7). By subtracting Equa-
tion (8) from (9) yield

h% = 2eV. (11)
We can write equation (11) in the form

dF

—=V, 12
pm (12)

where F has the dimensions of magnetic
flux, and is defined according to

=
f=2p—, 13
P e (13)

0
in which F, =h/2e=2.064"10""Wb is
the quantum of magnetic flux. From (10) and
(23) we have

F=Fogint ), (14)
2p J

In practice, this nonlinear flux-current

Fig. 2. Long Josephson junction
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relation can be thought of as representing a
nonlinear inductance.

If V=0, then (11) implies f = const.
which is in general non-vanishing. Then
from (10) this leads to a finite current densi-
ty J even in the absence of an applied volt-
age. This effect is known as DC Josephson

effect. If V=V, =const., F=Vt+F,

where Fis a constant of integration, and

(14) yields an alternating current density
which is known as AC Josephson effect.

3=3,5in 2 (vt +F. (15)
I:0
Therefore, an alternating current density

Lax

é

i+di

17

in which K is the dielectric constant of the
dielectric, e, =8.8547107*C?/Nm?’ and

a is the width of the superconducting strip.
Inductance per unit length is

21, +d

L= (18)

wherem, =4p “107", and I is the pene-

tration depth of the superconductors[9].
From basic circuit theory, the following
equations result

:' V-d¥ __ ']_‘|:l-|:-il.l'l'11‘(|x __
i Cdx ;
:_* dx __1
Fig. 3. equivalent circuit of a Josephson junction
develops with an angular frequenc
P gular frequency W M 19
ix qt
_2pV, _ 2eV,
=TT 19 g
Fo n I v F
—=-C—-1J,sin2p —, (20)
This frequency is of the order of a few ix it Fo
hundred MHz per mV voltage difference
1F
[9-11]. —=V. (21
it

We now turn to a long Josephson junction,
which consists of two relatively long strips
of superconducting materials, separated by
a very thin dielectric of thickness d.

According to Figures (2) a length ele-
ment dx of this device, is electrically
equivalent to the circuit with capacitance
per unit length

Equation (19) can be derived by using
the Kirshohf's voltage law and equation
(20) by Kirshohf's current law [Grant and
Philips, 1975]. It should be noted that the
source of nonlinear sine term in equation
(20) is from superconductivity of the strip.
These equations can be easily combined to
yield the following sine-Gordon equation
for the phase difference [12, 13]
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2 2
jTT]:_C ﬂTE+W§sinf=0, (22)

in which

andw. = |22 (53

1
C, = —,
T JLe " VF.C

And (14) has been used. Note that
¢, /w , has dimensions of length. It describes

a length scale, called Josephson penetration
length. This determines whether a Josephson
junction is 'long' or not [14].

Equation (22) can obviously have the kink
solution, in which b=1, a=w/c; and

c®c, . The corresponding current | , and

voltageV , can then be easily calculated using
equations (19), (20) and (21). The kink (anti-
kink) describes a pulse of 2p (-2p ) phase
difference, corresponding to a quantum of
magnetic flux accompanied by a voltage and
current pulse. The kink (anti-kink) is thus
called a fluxon (anti-fluxon) in this case [15].

Sine-Gordon Equation of Josephson Junc-
tion in Inhomogeneous Media
If we assume permeability (e) to be position

dependent (e = e (X)), then the sine-Gordon
equation in inhomogeneous media is:

1’

—==- 24

v () (24)
T T @)
ix % 1(x) "
" C(x) e Josinj. (26)

If we insert Eq. (25) into Eq. (26), we ob-
tain:

IRCY I
x x I(x) 1%

@7)

Using a little algebra, we can find:

[ T
—C(x)ﬂ—é-JOS|nJ.

. e(x). _ 1
JXX C2 Jn—E

where I ;= L and C, —@.
2pm,J,d d

In order to solve this Eq., we assume:

sinj, (28)

3 () = 4tan"[exp@ (X)) (X = % (t) = %)],
(29)

Where a(x) and X, (t) are unknown
functions. For calculating the differential Eq.
governed on a(x)and X, (t) we must differ-
entiate the Eqg. (29) with respect to X and t
twice, we have

2
1111_ = 2f tsechf - 2f (?sechf tanhf =
X

(30)
of @sin%+f @sinj,
ﬂ—:ZFESechf - 2f& sechf tanhf =
qit? (31)
21‘%in%+f&sinj,
where

f(x 1) =a(x)(x-x(t) - %) (32)

Substituting these relations in Eq. (28), we
obtain

ot tsind o @2sinj -2%)
2 C
i (33)
(Z&in%w&sinj)-l—lzsinj =0.
J
Equating the coefficients sinj and

sin 1 then,
2

e t¥g 1.4 (34)
cz P
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2fi- 20 & o (35)

2
0

By substituting f¢, f¢ , B and €in Eq.s
(30) and (31) respectively, thus we obtain

2al(x)(x - x, (t)) +4at(x)+
Zec(zx’ (@ ()& (1) =0, (3)

0
2

@ix)(x - x () +a(x))” -
e(x 1

) @k @ -5 =0, @)
Co 1;

In order to determine the dynamics of the
center of mass of the soliton we put

X=X, (t) in Eq. (36) and (37), which leads
to,

(4 ) = - (zxfgt» al(x, (1)), ()
a2, )N =2 - G )

e(x (1) e MO

Multiplying Eq. (38) by X(t) and inte-
grating it with respect to t, we obtain

&(t) 20 40
A0 (0T = - A+ (40

Eq. (39) is divided into 2a then:
() _Coalx ()
2 2e(x (1))

of}
2e (x, O 17a(x (1))

Left side of the Eq. (40) is equal to Eq.
(41), then we can obtain integration constant,

C ’

a(x ()
(41)

c =22 )Cq , Coakxk®)
e(xy () 2e (xy (t))
o
2 (x ) 172 (x ()
As C is constant, we derive it for special
case & =a, and e(X) = e, then,

(42)

_5a,C2  C

C > .
2e, 2liea,

(43)

Substituting C into Eg. (42) we can ob-
tain:

age(x) __ e

a(x) = +VA, (44
) 2¢, 10P%ea, “)
Where

A-@eE0)_ (), 1

2e, 10Nlea, 51

In order to confirm our calculation, If
I, =1lande(x) =e, =1thena =a,.
Rescaling our equation asa, =1, 1, =1
and e, =1then

4 6 , . 1
a(x)=—e(x)+.,[—e“(X)+—.
()10() 100()5

If e(x)=1+V(x) and assume V(X) is

very small then it yields a » 1+ %V(x)

From Eq. (38), we can obtain the dynamics of
the soliton's center of mass as:
e(x, (1) d2x (©) _ _2al(x, () _

oF; dt? a(xy (t))

) (45)
—&(ZIna(xk t)).
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Fig. 4b. Time evolution of the center of mass of
the soliton in harmonic potential.
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Fig. 5b. Time evolution of the center of mass
of the soliton in the potential of inclined
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Fig. 6b. Time evolution of a soliton against a
potential barrier. The soliton can go through the
barrier.

Comparing this equation with Newton's

2 u)
m e
e ——

-

O ———r e —
e
o — s ]

L

—
= e ———
o £

Fig. 4a. Time evolution of a soliton against
in harmonic potential.
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Fig. 5a. Time evolution of a soliton against the
potential of inclined plane.
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Fig. 6a. Time evolution of a soliton against a
potential barrier. It is reflected from barrier.

Second law
d’x  duU
—_— = 46
dt? dx (40

Thus
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mzﬁ,U:ZIna. (47)

0
In this equation, mis the center of mass
soliton and U = 2In(1 + %V(x)) is potential

of soliton.
If variable of the dielectric constant is

small V(x)4l then U»%V(x) and

m=e(x)=e,(1+V(x))»1.
Then

&2V _g (48)
3 dx

Numerical Results

We solve Eq. (28) by method of finite differ-
ence fore(x) =e(1+V(x)) and Eq. (48),
and campare them. In all the figures (4a), (5a)
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