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  چکیده

اتصال جوزفسون همگن باشد، معادله  يدو ابررسانا نیب کیالکتريگر دا
 یمقاله حالت نیگوردون است. در ا ینوسیمعادله س ستم،یس نیحاکم بر ا

تابع مکان باشد را  دو ابر رسانا ناهمگن و نیب کیالکتريکه در آن د
 دسته آن را ب يو عدد یلی. سپس پاسخ تحلمیدهمی قرار یمورد بررس

کرده و رفتار ذره را به کمک پاسخ  لیو تحل هیو آن را تجز میآورمی
پاسخ  نیکه ا میدهمی و سرانجام نشان میکنمی يسازهیشب یتونیسال
  .کندمی تیتبع وتنیاز قانون دوم ن دهیگزیجا
  

  لیديواژگان ک
  .اتصال جوزفسون، معادله سینوسی گوردون، سالیتون

 

Abstract 
If the dielectric between two superconductors of the 
Josephson junction is homogeneous the governing 
equation for the phase of the system can be described 
by the sine-Gordon equation. In this paper, we con-
sider inhomogeneous dielectric medium, such that the 
dielectric constant is position dependent. Then, we 
derive the sine-Gordon equation correspondence of 
this system and find its analytical and numerical soli-
ton solutions. We simulate the particle behavior of 
the soliton solutions, and finally, we show that they 
obey the Newtonian’s second law of motion.  
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Introduction 
One of the most successful testing grounds 
for nonlinear wave theory is the Josephson 
transmission line. Such transmission lines are 
used for information processing and storage. 
In a long Josephson junction or transmission 
line, the physical quantity of interest is a 
quantum of magnetic flux, or a fluxon, which 
has a soliton behavior. Consequently, it can 
be used as a basic bit in information pro-
cessing systems. It can be shown that the 
governing equation for this phenomenon is 
the sine-Gordon equation [1, 2]. The tunnel-
ing effect of Cooper pairs across a thin insula-
tor between two superconductors was pre-
dicted by B. D. Josephson [3-6]. If two super-
conductors are separated by a thin insulator or 
non-superconductor, super current can flow 
from one superconductor to another; this is 
known as Josephson effect [7]. 

When two superconductors are separated 
by a distance d , if d  is large, the wave func-
tions and phases of two superconductors are 
independent. If d is small, single electrons 
can flow from one superconductor to another 
with tunneling phenomenon. If d is very 
small about 30 oA , cooper pair can flow from 
one superconductor to another. Josephson 
discovered if two superconductors are sepa-
rated by very small layer insulator, cooper 
pair can be tunneling from one superconduc-
tor to another and this junction is called Jo-
sephson junction. In Josephson junction some 
special and interesting phenomena can occur. 
The most important one is to appear fluxons. 

Fluxon is a circulating super current across 
the insulator layer Josephson junction.  

If a bias current applied to a fluxon, it can 
be forced to move along the junction, when 
circulating current induces a magnetic filed, 
the fluxon can endure a Lorenz force, thus the 
fluxon starts to move along junction with in-
creasing speed until it reaches the maximum 
speed that is balanced between the dissipative 
effects and Lorenz force fluxon in Josephson 
junction.  

 
In sec. 2 we will derive sine-Gordon equa-

tion that governs Josephson junction. Any 
spatial variation in the dielectric permeability 

e  or variation in the separation between two 
superconductors, results in a position-
dependent of capacitance and inductance. 
This -in turn- affects the propagation of kinks 
in the junction. The situation can be approxi-
mated by the classical analog of a point parti-
cle moving in a velocity dependent external 
potential. We will discuss this further in sec 3. 
In sec 4 we will discuss numerical calculation 
and give some example. Finally, we conclude 
our discussion with conclusion and results.  
 
Derivation of Sine-Gordon Equation in 
Josephson Junction 
Electrons can move as Cooper pairs in each 
superconductor. If the common macroscopic 
wave function of all the electron pairs is writ-
ten as, 
 

fy ieR=   ,                                           [1] 
 

where R is the Cooper pair density and f  is 
the quantum phase common to all the pairs, in 
this case, the two superconductors will natu-
rally have independent wave functions 1y
and 2y  with uncorrelated phases 1f  and 2f , 
unless the two superconductors are set near 
enough to each other, say less than about 30

oA . See Figure 1. The phases then become 
correlated because of Cooper pair penetration 
through the insulator barrier. 
 

 
 

Fig 1. Two coupled superconductor with weak 
link and 

amplitude of macroscopic wave function of 
two superconductors. 

The wave functions 1y  and 2y  satisfy 
two coupled linear Schrodinger equations [8]  
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1 yy

y kE
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h  ,                           (2) 
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where 1E  and 2E  are the ground state ener-
gies of electrons in the two superconductors. 
Here, we have assumed that the two super-
conductors are similar. k  is a real coupling 
constant which depends on the characteristics 
of the junction. Obviously, if ¥®d  then 

0®k , where d is the barrier thickness. 
When a static potential difference V  is main-
tained between the two superconductors, an 
energy shift eVEE 221 =-  is developed. 
We can arbitrarily choose the reference ener-
gy at 02/)( 21 =+= EEE , and therefore 

eVE =1 and eVE -=2 . Equations (2) and 
(3) then respectively become 
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y keV
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h                          (4) 
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Using the expressions 1
11

fy ieR=  and 
2

22
fy ieR=  in these equations and sepa-

rating the real and imaginary parts, we obtain 
 

,sin2 21
1 fRRk

t
R

-=
¶

¶
h                       (6) 
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,cos/ 21
2 eVRRk
t

+=
¶

¶
f

f
h          (9) 
 

in which 12 fff -=  is the phase difference 
between the two wave functions. 
Let us define the quantities tRJ ¶¶= /11 and

tRJ ¶¶= /22 . 1R  and 2R  represent elec-
tron pair densities which deviate only slightly 
from their equilibrium values 0R . We there-
fore have 021 RRR »» , and

0021 /2)/2( JkRRRk =» hh , and there-
fore 
 

,sin0 fJJ »                                        (10) 
 
according to (6) or (7). By subtracting Equa-
tion (8) from (9) yield 
 

.2eV
dt
d

=
f

h                                          (11) 

We can write equation (11) in the form 
 

,V
dt
d

=
F

                                               (12) 
 
where F  has the dimensions of magnetic 
flux, and is defined according to 
 

0

2
F
F

= pf  ,                                          (13)  

 

in which Wbeh 15
0 10064.22/ -´==F is 

the quantum of magnetic flux. From (10) and 
(13) we have 
 

.sin
2 0

10

J
J-F

=F
p

                                 (14) 

 

In practice, this nonlinear flux-current 

Fig. 2. Long Josephson junction 
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relation can be thought of as representing a 
nonlinear inductance.  

If 0=V , then (11) implies .const=f  
which is in general non-vanishing. Then 
from (10) this leads to a finite current densi-
ty J even in the absence of an applied volt-
age. This effect is known as DC Josephson 
effect. If .0 constVV == , 10 F+=F tV  

where 1F is a constant of integration, and 
(14) yields an alternating current density 
which is known as AC Josephson effect. 

 

).(2sin 10
0

0 F+
F

= tVJJ p
                     (15) 

 

Therefore, an alternating current density 

develops with an angular frequency  
 

.22 0

0

0

h
eVV

J =
F

=
p

w                             (16)  

 
This frequency is of the order of a few 

hundred MHz per Vm voltage difference 
[9-11]. 
We now turn to a long Josephson junction, 
which consists of two relatively long strips 
of superconducting materials, separated by 
a very thin dielectric of thickness d.  

According to Figures (2) a length ele-
ment dx of this device, is electrically 
equivalent to the circuit with capacitance 
per unit length  

 

.0

d
aKC e

=                                             (17)  

 
in which K  is the dielectric constant of the 
dielectric, 2212

0 /10854.8 NmC-´=e and 
a  is the width of the superconducting strip. 
Inductance per unit length is  
 

,2
0 a

dL L +
=

l
m                                    (18) 

 
where 7

0 104 -´= pm , and Ll is the pene-
tration depth of the superconductors[9]. 

From basic circuit theory, the following 
equations result 
 

,
t
IL

x
V

¶
¶

-=
¶
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                                        (19) 

 

and 

,2sin
0

0 F
F

-
¶
¶
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¶
¶

pJ
t
VC

x
I

              (20) 

 

.V
t

=
¶
F¶

                                                (21) 

 
Equation (19) can be derived by using 

the Kirshohf's voltage law and equation 
(20) by Kirshohf's current law [Grant and 
Philips, 1975]. It should be noted that the 
source of nonlinear sine term in equation 
(20) is from superconductivity of the strip. 
These equations can be easily combined to 
yield the following sine-Gordon equation 
for the phase difference [12, 13] 

Fig. 3. equivalent circuit of a Josephson junction 
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in which  
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LC
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And (14) has been used. Note that 
pJc w/ has dimensions of length. It describes 

a length scale, called Josephson penetration 
length. This determines whether a Josephson 
junction is 'long' or not [14]. 

Equation (22) can obviously have the kink 
solution, in which 1=b , 22 / Jp ca w=  and

Jcc ® . The corresponding current I , and 
voltageV , can then be easily calculated using 
equations (19), (20) and (21). The kink (anti-
kink) describes a pulse of p2  ( p2- ) phase 
difference, corresponding to a quantum of 
magnetic flux accompanied by a voltage and 
current pulse. The kink (anti-kink) is thus 
called a fluxon (anti-fluxon) in this case [15].  
 
Sine-Gordon Equation of Josephson Junc-
tion in Inhomogeneous Media 
If we assume permeability )(e  to be position 
dependent ))(( xee = , then the sine–Gordon 
equation in inhomogeneous media is:  
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If we insert Eq. (25) into Eq. (26), we ob-

tain: 
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Using a little algebra, we can find: 
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where 
dJJ

00

0

2pm
l

F
=  and 

d
akC 0

0
e
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In order to solve this Eq., we assume: 
 

)],)())(([exp(tan4)( 0
1 xtxxxx k --= - aj

                                                                (29) 
 

Where )(xa and )(txk  are unknown 
functions. For calculating the differential Eq. 
governed on )(xa and )(txk we must differ-
entiate the Eq. (29) with respect to x  and t  
twice, we have       
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where  
 

).)()((),( 0xtxxxtxf k --= a        (32) 
 

Substituting these relations in Eq. (28), we 
obtain  
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Equating the coefficients jsin  and 

2
sin j

 then, 
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.0)(22 2
0

=-¢¢ f
C

xf &&e
                              (35) 

 

By substituting f ¢ , f ¢¢  , f& and f&& in Eq.s 
(30) and (31) respectively, thus we obtain  
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In order to determine the dynamics of the 

center of mass of the soliton we put
)(txx k= in Eq. (36) and (37), which leads 

to,  
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Multiplying Eq. (38) by )(txk& and inte-

grating it with respect to t, we obtain  
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Eq. (39) is divided into a2  then: 

 
22
0

2
0
2

( ( ))( )
( ( ))

2 2 ( ( ))

,
2 ( ( )) ( ( ))

kk
k

k

k J k

C x tx t
x t

x t

C
x t x t

a
a

e

e l a

= -
&

  (41) 

 
Left side of the Eq. (40) is equal to Eq. 

(41), then we can obtain integration constant, 
C ,   

2 2
0 0

2
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2
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As C  is constant, we derive it for special 
case 0aa =  and 0)( ee =x then, 
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Substituting C  into Eq. (42) we can ob-

tain: 
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Where 
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In order to confirm our calculation, If 

1=Jl  and 1)( 0 == ee x  then 0aa = . 
Rescaling our equation as 10 =a , 1=Jl  
and 10 =e then  

5
1)(

100
16)(

10
4)( 2 ++= xxx eea . 

 
If )(1)( xVx +=e and assume )(xV is 

very small then it yields )(
3
21 xV+»a         

From Eq. (38), we can obtain the dynamics of 
the soliton's center of mass as:  

2
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Comparing this equation with Newton's 
Second law 
 

,2

2

dx
dU

dt
xdm -=                                     (46) 

 

Thus 
 

Fig. 4a. Time evolution of a soliton against 
in harmonic potential. 

Fig. 5b. Time evolution of the center of mass 
of the soliton in the potential of inclined 

plane. 

Fig. 6a. Time evolution of a soliton against a 
potential barrier. It is reflected from barrier. 

Fig. 4b. Time evolution of the center of mass of 
the soliton in harmonic potential. 

Fig. 6b. Time evolution of a soliton against a 
potential barrier. The soliton can go through the 

barrier. 

Fig. 5a. Time evolution of a soliton against the 
potential of inclined plane. 
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2
0

)(
C

xm e
=  , aln2=U .                       (47) 

 
In this equation, m is the center of mass 

soliton and ))(
3
21ln(2 xVU += is potential 

of soliton. 
If variable of the dielectric constant is 

small 1)( ááxV  then )(
3
4 xVU » and 

1))(1()( 0 »+== xVxm ee . 
Then  
 

 0
3
4

=+
dx
dVx&& .           (48) 

 
Numerical Results 
We solve Eq. (28) by method of finite differ-
ence for ))(1()( xVx += ee and Eq. (48), 
and campare them. In all the figures (4a), (5a) 

and (6a), we have considered Eq. (28), and 
draw the time evolution of the derivative of 
the soliton solution. In figures (4b), (5b) and 
(6b), we simultaneously solve Eq. (48) nu-
merically with the same initial conditions. We 
can draw time evolution of the center of mass 
of the soliton. By comparing these two fig-
ures, we observe that they are completely 
identical. 
 
Conclusions 
In this paper, we have changed Josephson 
junctions and taken the coefficient of dielec-
tric as a function of position, and then we 
have solved sine-Gordon eq. in this media. At 
last, we have numerically solved the differ-
ence potential and observed that behavior of 
solitons conformed to the Newton's second 
law. Thus, we can control departure of fluxon 
and make new electromagnetic keys. 
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