نوع مقاله : پژوهشی

نویسندگان

دانشکده فیزیک، دانشگاه پیام نور، تهران، واحد شرق

چکیده

در این مقاله ویژگی‌های اپتیکی سه فروالکتریک BaTiO3/SrTiO3/ CaTiO3 از جمله ضریب شکست، ضریب خاموشی، ضریب جذب، ضریب بازتاب، تابع اتلاف و رسانندگی در پایدارترین فازشان به ترتیب در فازهای رمبوهدرال (p4mm)، مکعبی (m3m) و اورتورومبیک (pbnm) محاسبه و بررسی شده‌اند. محاسبات با استفاده از روش شبه پتانسیل با تقریب GGA در چارچوب نظریۀ تابعی چگالی انجام شده است. مقادیر به دست آمده برای ثابت‌های شبکه پس از بهینه‌سازی، ثابت دی‌الکتریک استاتیک، ضریب شکست استاتیک و فرکانس پلاسمایی توافق خوبی با نتایج تجربی و کارهای تئوری دیگر دارد. با توجه به مقادیر ثابت دی‌الکتریک و ضریب جذب اپتیکی مناسب در بازه eV12-4، این اکسیدهای پروسکایت دی‌الکتریک‌های خوبی محسوب می‌شوند. در انرژی‌های بیشتر از eV13 هر سه ترکیب شفاف هستند و ماکزیمم رسانندگی برای سه ترکیب در بازه انرژی eV5 اتفاق می‌افتد. همچنین مقدار ضریب D از طریق معادله گلاستون -دل برای سه ترکیب محاسبه شده است.

کلیدواژه‌ها

[1] Zhu J, Li H, Zhong L, Xiao P, Xu X, Yang X, et al. Perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis. Acs Catalysis. 2014; 4(9): 2917-40.
[2] Dogan F, Lin H, Guilloux-Viry M, Peña O. Focus on properties and applications of perovskites. Science and technology of advanced materials. 2015; 16(2): 020301.
[3] Souza ECCd, Muccillo R. Properties and applications of perovskite proton conductors. Materials Research. 2010; 13(3): 385-94.
[4] Souza J, Rino J. A molecular dynamics study of structural and dynamical correlations of CaTiO3. Acta Materialia. 2011; 59(4): 1409-23.
[5] Inaguma Y, Sohn J-H, Kim I-S, Itoh M. Quantum Paraelectricity in a Perovskite La1⁄ 2Na1⁄ 2TiO3. Journal of the Physical Society of Japan. 1992; 61(10): 3831-2.
[6] Ang C, Bhalla A, Cross L. Dielectric behavior of paraelectric KTaO 3, CaTiO 3, and (L n 1/2 Na 1/2) TiO 3 under a dc electric field. Physical review b. 2001; 64(18): 184104.
[7] Piskunov S, Eglitis RI. First principles hybrid DFT calculations of BaTiO3/SrTiO3 (001) interface. Solid State Ionics. 2015; 274: 29-33.
[8] Liu Q-J, Zhang N-C, Liu F-S, Wang H-Y, Liu Z-T. BaTiO3: Energy, geometrical and electronic structure, relationship between optical constant and density from first-principles calculations. Optical Materials. 2013; 35(12): 2629-37.
[9] Guennou M, Bouvier P, Kreisel J, Machon D. Pressure-temperature phase diagram of SrTiO 3 up to 53 GPa. Physical Review B. 2010; 81(5): 054115.
[10] Yashima M, Ali R. Structural phase transition and octahedral tilting in the calcium titanate perovskite CaTiO3. Solid State Ionics. 2009; 180(2-3): 120-6.
[11] Evarestov RA, Bandura AV. First‐principles calculations on the four phases of BaTiO3. Journal of computational chemistry. 2012; 33(11): 1123-30.
[12] Wyckoff, R. W. G., Crystal structure. Wiley; New York, vol 1, p. 86, 2nd ed, 1963.
[13] Boutinaud P, Pinel E, Dubois M, Vink A, Mahiou R. UV-to-red relaxation pathways in CaTiO3: Pr3+. Journal of luminescence. 2005; 111(1-2): 69-80.
[14] Salehi H. First Principles Studies on the Electronic Structure and Band Structure of Paraelectric SrTiO3 by Different Approximations. Journal of Modern Physics. 2011; 2(09): 934.
[15] Moreira ML, Paris EC, do Nascimento GS, Longo VM, Sambrano JR, Mastelaro VR, et al. Structural and optical properties of CaTiO3 perovskite-based materials obtained by microwave-assisted hydrothermal synthesis: An experimental and theoretical insight. Acta Materialia. 2009; 57(17): 5174-85.
[16] Ekuma CE, Jarrell M, Moreno J, Bagayoko D. First principle electronic, structural, elastic, and optical properties of strontium titanate. AIP advances. 2012; 2(1): 012189.
[17] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of physics: Condensed matter. 2009; 21(39): 395502.
[18] Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical review letters. 1996; 77(18): 3865.
[19] Hewat A. Structure of rhombohedral ferroelectric barium titanate. Ferroelectrics. 1973; 6(1): 215-8.
[20] Lee H, Mizoguchi T, Yamamoto T, Ikuhara Y. First principles study on intrinsic vacancies in cubic and orthorhombic CaTiO3. Materials transactions. 2009; 50(5): 977-83.
[21] Fan Q, Yang J, Deng C, Zhang J, Cao J, editors. Electronic structure and optical properties of CaTiO 3: An ab initio study. Sixth International Conference on Electronics and Information Engineering; 2015: International Society for Optics and Photonics.
[22] Grundmann M. Kramers–kronig relations.  The Physics of Semiconductors: Springer; 2010. p. 775-6.
[23] Valedbagi S, Fathalian A, Elahi SM. Electronic and optical properties of AlN nanosheet: an ab initio study. Optics Communications. 2013; 309: 153-7.
[24] Yu Y, Cardona M. Fundamentals of Semiconductors: Physics and Materials Properties, Springer, Berlin; 1999.
[25] Saha S, Sinha T, Mookerjee A. Structural and optical properties of paraelectric SrTiO3. Journal of Physics: Condensed Matter. 2000; 12(14): 3325.
[26] Bäuerle D, Braun W, Saile V, Sprüssel G, Koch E. Vacuum ultraviolet reflectivity and band structure of SrTiO 3 and BaTiO 3. Zeitschrift für Physik B Condensed Matter. 1978; 29(3): 179-84.
[27] Rocquefelte X, Goubin F, Koo H-J, Whangbo M-H, Jobic S. Investigation of the origin of the empirical relationship between refractive index and density on the basis of first principles calculations for the refractive indices of various TiO2 phases. Inorganic chemistry. 2004; 43(7): 2246-51.